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ABSTRACT

Joint filtering of signals indexed on a graph consists in filtering not
only the signal, but also the graph by an appropriate downsampling.
Existing methods for filtering and downsampling graph signals ap-
proximate graphs as sums of bipartite graphs or use nodal domains
of the Laplacian. Here, a different method is introduced, and is based
on the partitioning in meaningful subgraphs of the graph itself, e.g.
network’s communities; this partition may be interpreted as a coars-
ening of the graph and may also be tailored to be aware of the signal
structure. A method is proposed to create filterbanks that compute,
for graph signals, an approximation and several details using the par-
tition to downsample the graph. This means that we jointly filter the
graph and the graph signal; it leads to the design of a new subgraph-
based filterbank for graph signals. This design is tested on simple
examples for compression and denoising.

Index Terms— graph signal processing, graph filtering, filter-
banks, communities

1. INTRODUCTION

Graph signal processing is an emerging field meant to study signals
defined on graphs by importing and adapting tools from classical
signal processing to the graph context [1]. Among major tools in
signal processing, filterbanks and particularly wavelet filterbanks [2]
are important as they allow to decompose a signal in components
of various frequencies and provide powerful tools, for instance for
denoising and compression.

An element makes the adaptation of filterbanks to graph signal
not straightforward: the graph itself is not the same from one situ-
ation to another, and the structure of the graph has to be taken into
account to define filterbanks for graph signals. In the present work,
we propose to follow the idea of jointly filtering the graph signal
and the graph: the graph will be appropriately downsampled on a
partition of the graph into connected subgraphs and this constitues
a coarsening of the graph, while the graph signal is filtered on these
connected subgraph.

We first present background elements required to the present
work and discuss relevant works in Section 2. Then, we define in
Section 3 the proposed filterbanks based on downsampling in con-
nected subgraphs. Some examples are given in Section 4 and we
conclude in Section 5.

This work was partly funded by the European Research Council,
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GRAPHSIP grant.
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Fig. 1. Classical two channel filterbank.

2. BACKGROUND AND RELATED WORKS

2.1. The Graph Fourier Transform

Let G = (V, E ,A) be a undirected weighted graph with V the set
of nodes, E the set of edges, and A the weighted adjacency matrix
such that Aij = Aji ≥ 0 is the weight of the edge between nodes i
and j. Note N the total number of nodes.

Let us define the graph’s Laplacian matrix L = D −A where
D is a diagonal matrix with Dii = di =

∑
j Aij the strength of

node i. L is real symmetric, therefore diagonalizable: its spectrum
is composed of (λl)l=1...N its set of eigenvalues that we sort: 0 =
λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN , and of Q the matrix of its normalized
eigenvectors: Q = (q1|q2| . . . |qN ).

A defining analogy for graph Fourier transform is to consider
these eigenvalues to play the role of “frequencies” [1], and the corre-
sponding eigenvectors the role of Fourier modes. This means that the
graph Fourier transform of a signal defined on the nodes of a graph
is the decomposition of this graph signal onto the basis formed by
these eigenvectors. Hence, the graph Fourier transform of a signal x
reads as x̂ = Q>x.

2.2. Filterbanks

A classical filterbank is an array of filters meant to separate a signal
into several components, each in a specific band of frequency. A
classical scheme is the two-channel multirate system as in Fig. 1,
where the two filtered channels (one low-pass and one high-pass)
are followed by a decimation operator (↓ 2), keeping only one every
two samples, to downsample the output.

Let us recall briefly some elements of wavelet filterbanks [2].
Let us consider a discrete signal x of size N . The first channel gives
an approximation x1 of size N/2:

x1 = (↓ 2)Cx, (1)

where C is a smoothing operator associated to the scaling function;
for the Haar filterbank, it is the sliding average operator. The second
channel gives the detail x2 of size N/2:

x2 = (↓ 2)Dx, (2)
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Fig. 2. Two approaches to downsampling for filterbanks: (a) clas-
sical decimation where one node over two is kept and the rest (in
grey) is discarded; (b) proposed downsampling by subgraphs; here,
the nodes are partitioned in subgraphs of 2 nodes and the approxi-
mation is on the “super-nodes” k that stand for each subgraph.

where D is the convolution by the wavelet; for Haar filterbank, this
is the sliding difference operator.

Wavelet filterbanks can be made both orthonormal (i.e., exactly
inversible with its transpose as inverse) and critically sampled (after
filtering, the number if coefficients is N , equal to the number of
initial coefficients). Decimation (↓ 2) has here a central role as it
allows to keep the number of coefficients constant even though one
obtains separate low-frequency approximations and high-frequency
details. Decimation in this case follows a “one every two samples
paradigm”, as illustrated on Fig. 2 (a).

For graph signals, filterbanks following the same “one every two
nodes paradigm” (as nodes take the role of samples) have already
been defined in the literature. Narang and Ortega [3, 4] propose to
consider signals defined on bipartite graphs, as one can then down-
sample the graph by naturally keeping one of the two partite sets, i.e.,
one every two nodes when following the edges in the graph. Then
they generalize that to any graph by an approximate decomposition
in bipartite graphs. Other graph filterbanks use bipartite graphs, such
as Sakiyama and Tanaka’s oversampling method [5], or Nguyen and
Do’s maximum spanning tree method [6]. Another way has been
proposed Shuman et al. [7]. They use the polarity (sign) of the eigen-
vector associated to the maximum eigenvalue of the Laplacian, the
one associated to the “highest frequency” of a signal defined on the
graph. Again, this leads to keeping “one every two nodes” for the
next level (e.g., the nodes with positive polarity).

In the present work, we will propose a different downsampling
paradigm to define a filterbank for graph signals: the downsampled
support of a graph signal will be defined via the grouping of nodes
in connected subgraphs of the original graph.

2.3. Partitioning a graph in connected subgraphs

Techniques to partition a graph into subgraphs that are connected
are numerous in the literature, e.g., see [8], [9], or even [10] that
partitions graph according to its nodal domains (as used in [7] for
the one with largest frequency).

In the following, we seek a design of graph partitioning that will
typically transform the original signal in a sparser one after analysis.
For that, we decide to look for partitions that separate the graph into
groups of nodes more connected to themselves than with the rest of
the graph – these subgraphs are also known as communities [11].
As there are many manners to partition graphs in communities (they
are reviewed in [11] and a graph processing approach can be found
in [12]), we limit here the discussion to one method: the greedy
Louvain method [13] for maximizing the modularity [14], a well-
known objective function that measures the quality of a partition in
communities.

Consider an arbitrary graph G and an arbitrary partition of this
graph in K connected subgraphs

{
Gk
}
k∈{1,...,K}. Write Nk the

number of nodes in subgraph Gk of label k. Let us first define the
matrix S ∈ RN×K , a practical way (for linear algebra calculus) to
encode the connected subgraph structure:

S =
(
1Csub 1|1Csub 2| . . . |1Csub K

)
. (3)

where 1Csub k is subgraph k’s indicator function, i.e.:

1Csub k(i) = 1 if i ∈ Gk

= 0 if not.
(4)

For a partition described by S, the modularity is defined as

Q(S) =
1

2m
Trace

(
ST (A− ddT

2m
)S

)
(5)

where d is the vector of strength (or degrees for unweighted graphs)
with di =

∑
j Aij , and 2m =

∑
i di.

For maximizing (approximately) Q, the Louvain algorithm re-
peats two steps iteratively. Initially, each node is supposed to be in
its own community. (1) Choose a node and move it to its adjacent
group that increasesQ the most; continue with another node until no
individual move of node can increase Q. Then (2) Merge the nodes
that are in the same community to obtain a new network, where the
new nodes are the communities of (1). After that, go back to (1) and
iterate. The procedure makes the existing groups grow in size by ab-
sorption of other nodes/groups. The procedure stops when step (1)
becomes unable to increase Q.

In the following, we will change an aspect of the algorithm: we
stop the iterations once the desired sizes of the subgraphs is reached.

3. FILTERBANKS BY DOWNSAMPLING ON
CONNECTED SUBGRAPHS

We let go of the “one every two nodes” sampling paradigm, and fo-
cus on a novel approach to downsampling that is based on a partition
of the graph in many connected subgraphs: the downsample is made
by coarsening the structure of the graph thanks to the definition of
“supernodes”, each one of them representing a connected subgraph
of the partition. Also, in the present work we do not define separately
the downsampling operators (↓ 2) and the filter operatorsC andD
as in eq. (1) and (2) for graph signals. Instead, we define directly an
operator L having the global effect of low-pass and downsampling,
and other ones B that combine band-pass and downsampling. For
classical two-channel filterbanks, L = (↓ 2)C andB = (↓ 2)D.

3.1. Proposed method

Definition of required local operators. The first ingredient is to
consider a partition of the graph G into K subgraphs Gk which
are connected. Each Gk is composed of Nk nodes, that we note
{vσk(1), vσk(2), . . . , vσk(Nk)}. Consider the sampling operator
C>k , that takes only the values from Gk on G; its transpose is
expressed as a matrix of size N ×Nk:

Ck =
(
δσk(1)|δσk(2)| · · · |δσk(Nk)

)
, (6)

where δσk(i)(j) = 1 if σk(i) = j, and zero otherwise.



From that, the adjacency matrix A may be written as the sum
of two adjacency matrices: A = Ai + Ae where Ai is the intra-
subgraph adjacency matrix, i.e. sampled by subgraphs:

Ai =

K∑
k=1

CkC
>
k ACkC

>
k . (7)

It keeps only the edges within each subgraph. The second one, Ae

will only keep the edges connecting subgraphs together.
For each subgraph Gk, we noteAk

i the reduction ofAi to Gk:

Ak
i = C>k AiCk, (8)

and Lk
i the local Laplacian associated toAk

i . It is diagonalisable, of
size Nk, and

Lk
i = QkΛkQk>, (9)

with Λk = diag(λk1 , λ
k
2 , . . . , λ

k
Nk

), the diagonal matrix of sorted
eigenvalues (λk1 being the smallest), and Qk the orthonormal basis
of local Fourier modes:

Qk =
(
qk1 |qk2 | . . . |qkNk

)
. (10)

Lastly, for each eigenvector qki of size Nk defined on the local sub-
graph Gk, we note q̄ki its zero-padded extension to the whole global
graph:

∀k ∈ {1,K} ∀i ∈ {1, Nk} q̄ki = Ckq
k
i . (11)

Definition of the different analysis channels. We propose to define
the equivalent of L (for the approximation) as a low-pass filtering
inside each subgraph, i.e. on Ai only, followed by a downsample
of each group in one super-node only. For that, the simple solution
studied here is to make an average of the signals on each subgroup.

Given that the first eigenvector of a Laplacian is simply constant
over all the nodes, it turns out that the local average can be expressed
using the local Laplacian’s associated to the Ak

i , as being the pro-
jection of the signal over:

Q1 =
(
q̄11 |q̄21 | · · · |q̄K1

)
. (12)

Then, for the details, we will make use of the other local graph
Fourier modes (i.e., eigenvectors of the Laplacian). In the case of the
Haar filterbanks, as in Fig. 2 (b), the details are in reality given by
the projection on the grouping of the second Fourier modes of each
subgraph of 2 nodes, as this second Fourier mode is (1,−1)/

√
2,

i.e. the Haar wavelet. We propose, by analogy, to keep as a second
channel the projection of the signal over:

Q2 =
(
q̄12 |q̄22 | · · · |q̄K2

)
, (13)

where we omit in the list the eigenvectors that would be associated to
subgraphs Gk that are singleton, because then q̄k2 does not exist. The
size ofQ2 is thenN×Mk whereMk is the number of subgraphs Gk
that have at least 2 nodes (i.e., it is K minus the number of singleton
in the partition in Gk’s).

We continue to define other detail channels by considering the
third local graph Fourier modes, then the fourth, and so on. In each
channel, the atom of decomposition is:

Ql =
(
q̄
Il(1)
l |q̄Il(2)l | · · · |q̄Il(|Il|)l

)
, (14)

where Il is the list of subgraph labels containing at least l nodes.
This means that operatorQl groups together all local Fourier modes
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Fig. 3. Scheme of the proposed filterbanks on connected subgraphs.
The number of channels Ñ1 is equal to the size of the largest sub-
graph in the used partition.
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Fig. 4. Partition of a graph into communities.

associated to the l-th eigenvalue of all subgraphs containing at least
l nodes. The number of channel Ñ1 is equal to the size of the largest
subgraph in the partition in Gk’s.

Analysis filterbank. Given a signal x defined on the graph, its de-
composition through the proposed filterbanks is done by Ñ1 chan-
nels, as shown on Fig. 3:

∀l ∈ {1, ..., Ñ1} xl = Q>l x. (15)

Each of them is defined on a graph whose adjacency matrix reads:

Al = S>l AeSl, (16)

when using grouping operators

Sl =
(
1Csub Il(1)

|1Csub Il(2)
| . . . |1Csub Il(|Il|)

)
, (17)

meaning that Sl groups together indicator functions of subgraphs
containing at least l nodes.

3.2. Properties

This filterbank is critically sampled, because it collects (after reorga-
nization) the Nk coefficients associated to each local graph Fourier
matrix (associated to Gk). As a partition of G, the subgraphs satisfy
that

∑K
k=1Nk = N , hence there are N total coefficients in the dif-

ferent channel outputs xl, the same as the N samples of the graph
signal x.

Also, because the local graph Fourier modes are bases (being
eigenvectors of the local Laplacians), they are invertible and their
inverse are their transpose. It means that the synthesis block is di-
rectly obtained by taking the transpose of the analysis filter and can
be written as

[
Q1 Q2 . . . QÑ1

]>. The perfect reconstruction
comes from the fact that:

[
Q1 Q2 . . . QÑ1

] 
Q>1
Q>2
. . .
Q>
Ñ1

 = IN , (18)



(a) Original (b) Noisy SNR 12.12

(c) CoSub, SNR 16.81 (d) EdAwCoSub, SNR 23.27

Fig. 5. Example of denoising on the Minnnesota traffic network.
The resulting SNR is indicated above each graph.

where IN is the identity matrix of size N .
If we keep {xl}l∈{1,Ñ1} and the graph structure and partition,

we can perfectly recover x. Indeed, from the subgraph structure, one
can compute again the {Ql}l∈{1,...,Ñ1}. Then, the original signal is
exactly:

x̃ =

Ñ1∑
l=1

Qlxl =

Ñ1∑
l=1

QlQ
>
l x = x. (19)

We show in Fig. 3 a representation of the analysis and synthesis
blocks of the proposed graph filterbanks.

3.3. Joint processing of signal and graph

If the partition in subgraphs is obtained via community detection,
as proposed in Section 2.3, Ai will contain many edges while Ae

may be comparatively sparse. This is illustrated in Fig. 4. Moreover,
if the communities can also be selected such that they follow the
structure of the graph signal, the details will also be relatively sparse.

To explore that, we define two different types of filterbanks:

• CoSub, short for Connected Subgraphs Filterbanks, where
we directly apply the Louvain algorithm for maximizing
modularity Q(S) for the adjacency matrix A, and the ob-
tained partition S is used to write A = Ai +Ae as defined
before;

• EdAwCoSub, short for Edge Aware Connected Subgraphs
Filterbanks: first we consider a modified adjacency matrix
that takes the signal x into account thanks to

Ax(i, j) = e
− (x(i)−x(j))2

2σ2x ifA(i, j) 6= 0

= 0 ifA(i, j) = 0
(20)

where σx = std({|x(i)−x(j)|}i∼j) (i ∼ j means i neighbor
to j in A). Then the Louvain algorithm is applied on Ax.
Finally, the obtained partition S enables us to decompose the
original adjacency matrix inA = Ai +Ae.

(a) Original (b) EdAwGrBior SNR 28.3

(c) CoSub, SNR 26.56 (d) EdAwCoSub, SNR 30.30

Fig. 6. Example of compression on an image, keeping aroung 3 % of
the coefficients. The resulting SNR is indicated above each graph.
The proposed method EdAwCoSub with edge awareness obtained
here a better SNR.

With some awareness of the graph signal, we expect the second
method to perform better if the graph and the graph signal can be
filtered jointly in a consistent manner (i.e., the communities found
by the Louvain algorithm from the structure of the graph are also
meaningful for the signal).

3.4. Cascade

It is possible to cascade the filterbank as usual. For each channel,
one iterates the same analysis scheme, thereby obtaining successive
approximations and details of the original signal at different scales
of analysis. Often, we will cascade the construction only on the
approximation signal at each level of the cascade. Remember that
the number of channels is adaptative and changes down the cascade:
it is equal to the maximal number of nodes in the largest subgraph in
the considered partition at this level.

4. EXAMPLES

Among the classical use of filterbanks, one finds denoising and com-
pression. We illustrate the proposed construction on two specific
examples of these applications.

First, we look at an example in compression on the Minnesota
road graph, as shown in Fig. 5. A piece-wise constant graph signal
(that has only two possible values: +1 and -1), is corrupted with an
additive Gaussian noise of standard deviation σ (equal to 1/4 here).
We attempt to restore the original image by doing an analysis with
one level of filterbank, and we reconstruct a signal from all low-pass
coefficients and hard thresholded high-pass coefficients that have ab-
solute value higher than a threshold T = 3σ. These preliminary
results show that the method performs well, and that the output of
EdAwCoSub –the version of the algorithm that takes into account



Fig. 7. Joint filtering of graph and graph signal of Fig. 5 (a): the
graph is coarsened by the proposed method while the signal is fil-
tered though the proposed filterbank.

the signal– is better. This is because the detected communities are
better adapted to the signal.

The second application is the use of the graph signal processing
approach for classical images, as one can easily consider an image
as a graph signal over the rectangular grid. We consider the square
benchmark image cameraman, of size 256 × 256 (N = 65536).
We use the proposed filterbank with only 1 level of cascade, where
the communities found contain K = 546 subgraphs for CoSub. We
keep the approximation signal of size 546 and 3.71% of the high-
pass coefficients in order to have exactly a number 2959 of non-zero
coefficients before reconstruction – which is the number of non-zero
coefficients when keeping the approximation obtained after three
levels of a classical filterbank, and 3% of its high-pass coefficients.
For EdAwCoSub, we do the same and retain the same number of
coefficients; finally, we compare the method to the Graph Bior fil-
terbank [4] with Nonzero DC and including edge-awareness of [15]
(EdAwGrBior), for the same compression rate.

Comparing the restored images after these compressions with
the two proposed filterbanks (CoSub and EdAwCoSub), and with
EdAwGrBior, the result is that, given awareness of the graph signal,
our new proposed scheme is on par with (here slightly better than)
other graph-based filterbanks.

A last example illustrates the potentialities of the proposed fil-
terbanks for joint filtering of graph and graph signal. On Fig. 7,
the Minnesota traffic graph and a function on it as on Fig. 5 (a) are
processed through the filterbank and we show only the resulting low-
pass filtered signal on the resulting filtered (or coarsened) adjacent
matrix. The result can really be seen as a step towards joint filtering
of signals and graphs.

5. CONCLUSION

We have proposed a new scheme to obtain a multi rate, orthogonal
and critically sampled filterbank for graph signals. It relies on the
partition of the underlying graph in connected subgraphs. This par-
titioning may be based on communities in the graph, though it can
be changed at will. It may also comprehend some awareness of the
signal over the graph. The filterbank’s structure is based on the local
Fourier modes. However a perspective of the work would be to use
more general filters instead of these modes; this could for instance
help in reducing the number of analysis channels that can be high if
some subgraphs are large.
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