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Abstract. The increasing availability of time -and space- resolved data
of human activities and interactions gives insight into the study of both
static and dynamic properties of human behavior. In practice, neverthe-
less, real-world datasets can often be considered as only one realisation
of a particular event, giving rise to a key issue in social network analy-
sis: the statistical significance of these properties. We focus in this work
on features regarding groups of the networks and present a resampling
- a.k.a. bootstrapping - method that enables us to add confidence inter-
vals to such features. This in turn gives us the opportunity to compare
groups’ behaviors within any network. We apply this method to a new
high resolution dataset of face-to-face proximity collected during two co-
located scientific conferences, and it enables us to probe whether or not
co-locating two conferences is an effective way of bringing together two
different communities.

Keywords: Complex System, Dynamic Network Analysis, Graph Re-
sampling, Bootstrap.

1 Introduction

High resolution experiments on face-to-face interactions between individuals in
different social gatherings - such as scientific conferences, museums, schools,
or hospitals - were made possible by the use of small radio sensors worn by
participants, communicating with each other by bluetooth, wireless or active
RFID (Radio Frequency Identification Device). These new data paved the way to
many empirical investigations [3, 4, 7, 9] of human contacts, both static (existence
of communities, clustering, distribution of degrees..) and dynamic (distribution
of duration of contacts, of intercontacts, or of groups of different sizes..). An
important issue regarding the analysis of these datasets is that each one of them
can be considered as only one realisation of a particular event, it is therefore
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challenging to estimate confidence intervals to any of the measurable features.
To this end, in the general non-network case, two methods based on constructing
many random samples from the unique original data, have been widely used: the
jackknife and the bootstrap methods [5]. In the case of networks, however, it is
not clear how to directly transpose the classical bootstrap approach to graphs [6,
10]. In this paper, we focus on features of groups of a network, and formulate a
resampling method that enables us to gain statistical significance by comparing
the real data with random pseudosamples found under well-chosen constraints.
The method is then applied to a dataset collected in two co-located conferences
involving two distinct communities: it enables us to assess to what extent both
communities mix together.

2 Resampling method for complex human contact
networks

There are admittedly several ways to model a human contact network by a
graph, but one can always end up with a weighted graph where each node is
an individual and where the strength of the interaction between two nodes is
quantified by the weight of their associated link. In the following we consider
such a weighted graph as well as a group of nodes within the graph that we
call X0, whose behavior we will compare to the behavior of random groups
called bootstrap samples. Let us call R0 the group of nodes that are not in X0.
We quantify X0’s “behavior” by looking at seven observables: N0

XX the total
number of links within X0, N0

RR the total number of links within R0, N0
XR

the total number of links connecting the two groups, T 0
XX the total weight of

intra-X0 links, T 0
RR the total weight of intra-R0 links, T 0

XR the total weight
of the links connecting the two groups, and Q0

X the modularity computed for
the partitioning in two groups X0 and R0. The modularity, in this case of a
partition in two groups, is a scalar between -0.5 and 0.5 and measures how well a
particular partition of the nodes separates the network into distinct communities
(a value tending to 0.5 denotes two strong communities) [8]. Depending on the
specific issue addressed, other observables could be considered. The backbone
of the resampling protocol is the following. First, formulate a Null Hypothesis
regarding the behavior of X0. Then, compute the behavior of a large number N
of groups randomly chosen within the graph called bootstrap samples (we use X
as a generic notation for the bootstrap samples) for which the Null Hypothesis
is true. The novelty is that each bootstrap sample is a random group under
constraint drawn with replacement. Finally, compare the behavior of X0 to the
statistical behavior of the bootstrap samples, and decide whether or not we can
reject the hypothesis. If it is rejected, a measure d is proposed to compute to what
extent X0 differs from the bootstrap samples and hence the Null Hypothesis. The
comparison between different groups’ behavior now boils down to the comparison
of the scalar d associated to each group.
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3 The data

We apply this method to a face-to-face proximity dataset collected in Salt Lake
City in November 2011 during two co-located scientific conferences jointly organ-
ised by DPP (APS’ Department of Plasma Physics) and GEC (Gaseous Electron-
ics Conference) in an attempt to bring both communities – academic researchers
and engineers respectively – together. In order to measure face-to-face proximity
between the conference attendees wearing them, we use low power RFID tags
embedded in conference badges, using the SocioPatterns sensing platform [1].
Two tags exchange packets only if they face each other (the human body acts
as a shield at this frequency and power) within a distance of 1 to 1.5 meters.
As soon as a tag receives a packet from another tag, it immediately uploads
this information to RFID readers installed in the environment. By aggregating
the five days of collected information, we obtain the overall network of contacts
between the 320 participants of the experiment. Comparison with other simi-
lar experiments, and analysis of the contact patterns will be detailed in a later
communication.

4 Is it worthwhile to co-locate both conferences?

4.1 Translating the question

In terms closer to our graph approach, we translate this question in: how well
do GEC nodes mix with DPP nodes? Of course, we cannot expect GEC to mix
as well as any random group of the graph: it is a community. Hence, in order
to answer to the question, we apply our method to assess the difference – or
similarity – between GEC’s behavior with three other known communities (that
will act as a benchmark): the senior researchers from DPP (SEP), the juniors
from DPP (JUP), and the students from DPP (STP). The group noted X0 in the
method will alternatively be GEC, SEP, STP, or JUP. We test those four groups
to the same Null Hypotheses and compare the degree with which they reject
them. To show that GEC’s behavior is peculiar, we look for the appropriate
Null Hypothesis – if it exists – that significantly discriminates GEC from the
other groups. In the following, the aggregated graph is pre-processed by deleting
links that have a total time of existence inferior to 1 minute (filtering threshold
under which we consider the measurement to be noise).

4.2 Same cardinal constraint for GEC

Consider the following Null Hypothesis: GEC behaves like any group of VX = 39
individuals in the conference. Here, the only constraint we impose to the boot-
strap samples is to have a cardinal equal to VX . We normalize each observable
Z: z = Z−Z̄∗

σ∗
Z

where Z̄∗ is the expected value and σ∗
Z the standard deviation in a

random graph with same total number of links and same weight sequence (this
is done by randomly re-allocating the weights within the ensemble of possible
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links). Note that Z̄∗ and σ∗
Z depend on VX . We choose this mode of represen-

tation for its clarity (we can plot all 7 observables on the same figure) but also
because it removes the effects due to the scale of the groups allowing us to com-
pare the results between different groups. For each normalized observable z, we
define dz the distance between the actual measured value zX

0

and the interval
z̄b± 3 σbz (dz = 0 if zX

0

is in the interval), where z̄b and σbz are computed on the
bootstrap samples. This interval has the meaning of an acceptance interval for
the Null Hypothesis. The sum d of the distances dz computed for each observable
is the measure we use to evaluate to what extent GEC rejects the Hypothesis:
the larger is d, the higher is our confidence level to reject the Hypothesis.
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Fig. 1. Results for X0 = GEC for a) the same cardinal constraint, b) the same cardinal
and same modularity constraint. Left: histogram of the number of occurrences of each
node in the bootstrap samples and its standard deviation σu. Right: histogram of
number of X0-nodes in a bootstrap sample with its χ2 distance from the theoretical
hypergeometric histogram (dotted line).

For all the results presented in the following, we use N = 1000 bootstrap
samples. In Figure 1.a, we plot two histograms. The first one shows the number
of times each node was chosen in a bootstrap sample. In the top right hand
corner is its standard deviation σu: it indicates how uniformly the nodes were
chosen. The second histogram shows how many nodes from GEC are in each
bootstrap sample. The green dotted line represents the theoretical hypergeo-
metric histogram computed for this same cardinal constraint. In the top right
hand corner of the figure is the χ2 distance between the observed and theoretical
histograms. Each χ2 value is computed with 10 bins that contain at least five
realisations. An important point is that we do not use χ2 for a goodness-of-fit
test. In fact, we expect χ2 to increase as soon as we impose stronger constraints
on the bootstrap samples. The idea is that in the extreme case where we impose
the boostraps to be exactly the GEC group, the distance d will obviously be
null, σu will be larger than 300 and χ2 larger than 1048 (the expected number
of bootstrap samples having 39 GEC nodes is 10−48), but we will have gained
zero information. Therefore, we use χ2 and σu as two control parameters of the
“randomness” of the test, and make sure they stay reasonably small.
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GEC: SEP:
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JUP: STP:
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Fig. 2. Results of the same cardinal test. For each group X0 = GEC, SEP, JUP and
STP, the scalar d (bottom right hand corner of each figure) is an estimation of the
distance between the statistical behavior of the bootstrap samples (boxplots) and the
real data (big green crosses). χ2 and σu are two control parameters of the “randomness”
of the test – see text.
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Fig. 3. Results of the same cardinal and same modularity test for the four groups.
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Finally, the top left figure of Figure 2 summarizes the same cardinal con-
straint test for GEC: it compares the boxplots of the bootstrap samples with
the measured behavior of GEC (big green crosses) and indicates d, σu and χ2 in
the bottom right hand corner of the figure.

4.3 Same cardinal constraint for all four groups

Figure 2 shows the results for the four groups. If the graph was random, we
would have boxplots centered around zero and whiskers between – typically –
−3 and 3 (corresponding to more than 99% coverage if the data was normally
distributed). It is not the case (not for the whiskers) and this is an indirect proof
that the graph is not random. Also, all groups have a non-null distance. This is
not a surprise because those groups are known communities and behave as such:
compared to the bootstrap samples, they tend to have high QX , NXX , NRR,
TXX , TRR and low NXR, TXR. Interestingly, GEC’s distance is clearly larger
than the others: with this first näıve test, it already shows a peculiar behavior.
However we can not say with statistical significance that its interaction with the
rest of the conference is different from that of any specific group of people such
as students or seniors (possibly also prone to discuss more with other people
from their group).

4.4 Other tests

To clearly show GEC’s peculiar behavior, we need to find the appropriate test –
if it exists – rejected by GEC but not by the others. To this end, we need to find
a compromise between strong enough constraints on the bootstrap samples to
make the test more discriminative, but, as previously explained, loose enough so
as to preserve the randomness of the test. In the first test, the only constraint we
imposed on the boostraps was to have the same cardinal as X0. We now refine
the Null Hypothesis: X0 behaves like any random group (with same cardinal)
that has the same modularity, hence forming a community as strong as X0.
Requiring the exact same modularity is too strong a constraint and we relax it
to: Q0

X(1 − δ) ≤ QX ≤ Q0
X(1 + δ) with δ the error we tolerate. In the following,

δ = 0.5%. We use a simulated annealing algorithm [2] to find such bootstrap
samples and we plot the results for the four different groups in Figure 3. First,
we see that the boxplots are not centered around zero anymore, they indeed need
to be in accordance with a high modularity. STP and JUP’s distances are null.
SEP’s distance is almost ten times smaller than GEC’s distance: this test is a
satisfying confirmation that GEC behaves differently than the other groups. We
plot in Figure 1.b the two same histograms as in Figure 1.a but for bootstrap
samples under these new constraints (for X0 = GEC). As expected, they show a
higher σu and χ2, yet not so large that the randomness of the bootstrap samples
would be questionable.

We also considered other kinds of constraints, for instance: keep NXX con-
stant, or keep the sum T = 2×TXX+TXR constant (total time of conversation of
nodes in X). Results are not plotted, but the distance to the bootstrap samples
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is always significantly bigger for GEC than for the other groups. Furthermore,
these tests are robust with respect to the filtering threshold we choose: results
are similar for a filtering of 1, 3 and 5 minutes.

5 Conclusion and on-going work

We propose here a generic method to compare the behavior of different groups
within a given graph. The method is inherently flexible: depending on the issue
addressed in the data at hand, some observables and Null Hypotheses will be
more appropriate than others. Furthermore, this method can be applied to any
type of data that can be modelled by graphs. We are currently working on ap-
plying this general method to Null Hypotheses involving the dynamical behavior
of groups, not only their aggregated behavior over time.
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