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Abstract Graph wavelets, a recently defined signal processing tool, are used to tackle a classical
complex system problem: community mining in networks. By construction, graph wavelets
encode local and scale-dependent information, providing “ego-centered” views (one for each node
and each scale) of the network. A careful definition of the wavelet kernel enables us to use these
wavelets for multi-scale community mining: groups of nodes that have similar “ego-centered”
views of the network at a given scale will tend to be in the same community at that scale.
Moreover, we propose a method based on partition stability that estimates the different “natural”
scales of a network. All in all, given a network, the method detects relevant scales if there are any,
and outputs the associated partitions. We successfully test this method on a graph benchmark
having hierarchical communities.

Keywords Complex Networks, Community Mining, Multiscale, Detection

1 Introduction

In many complex systems, data are naturally represented as networks (or weighted graphs): so-
cial networks, sensor networks, Internet networks, neuronal networks, transportation networks,
biological networks,... A striking property of many networks, and a common way of simplifying
the network’s analysis, is their modular structure, i.e., there exists groups of nodes, called com-
munities [3], that are more connected with themselves than with the rest of the network. As
nodes in a same community tend to share common properties, community mining provides both
a sketch of the structure of a network, and some insight on nodes’ properties. One issue in com-
munity mining is defining the scale at which one wants to analyze the network. Many algorithms
(see the review [3]) are based on the optimisation of appropriate evaluation functions such as the
popular modularity [14] and generally discard the question of the scale or propose only ad-hoc
discussions. Modularity for instance is known to favour an intrinsic scale of description [4, 10].

The present work is twofold. First, we develop a scale-dependent procedure which identifies
community structures, i.e., that classifies nodes according to their community, at different scales.
After one decides on a scale of interest (or a collection of scales), the objective is to mine for the
communities at this(ese) scale(s). Using multiple scales will provide a fully multiscale community
description of the network. Some authors have proposed multiscale community mining either
based on random walk processes [17, 11], or on definitions of parametric modularities [15, 1].
Our proposition for community mining is to rely on the recent construction of graph wavelets
based on spectral graph theory [5]. By nature, the wavelet associated to a node a and a scale s
is local. It is centered around this node and spreads on its neighbourhood so that the larger is s,
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the larger is the spanned neighbourhood. In some sense, wavelets give an “egocentered” view of
how a node “sees” the network at that scale. Taking advantage of this local information encoded
in wavelets, we develop an approach that clusters together nodes whose local environments are
similar, i.e., whose associated wavelets are correlated.

The second part of this work focuses on how to assess the relevance of a given scale. Indeed,
the method will always output a partition per scale, but does not decide whether these partitions
are relevant or not. Based on partition instability measures and on a statistical test where we
compare the graph of interest to Erdös-Renyi random graphs, we propose a way to detect the
relevant scales of the network.

Section 2 recalls useful background material on spectral graph theory and graph wavelets.
In section 3, the multiscale community mining algorithm is presented. In section 4, we discuss
partition stability and automatic detection of relevant scales. We conclude in section 5.

2 Spectral Graph Theory and Wavelets

2.1 The Graph Fourier Transform

Let G = (V,E,A) be a undirected weighted graph with V the set of nodes, E the set of edges, and
A the weighted adjacency matrix such that Aij = Aji ≥ 0 is the weight of the edge between nodes
i and j. Note N the total number of nodes. Let us define the graph’s Laplacian matrix L = D−A
where D is a diagonal matrix with Dii = di =

∑
j 6=iAij the strength of node i. The normalized

Laplacian matrix reads L = D−
1
2LD−

1
2 = I − D−

1
2AD−

1
2 . L is real symmetric, therefore

diagonalisable: its spectrum is composed of (λl)l=1...N its set of eigenvalues that we decide to
sort: 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN ≤ 2; and of χ the matrix of its normalized eigenvectors:
χ = (χ1|χ2| . . . |χN ). Considering only connected graphs, the multiplicity of eigenvalue λ1 = 0
is 1. For more properties of this spectrum, see [2] (theory) or [12, 13] (empirical). By analogy to
the continuous Laplacian operator whose eigenfunctions are the continuous Fourier modes and
eigenvalues their squared frequencies, χ is considered as the matrix of the graph’s Fourier modes,
and

(√
λl
)
l=1...N

its set of associated “frequencies”. For instance, the graph Fourier transform f̂

of a signal f defined on the nodes of the graph reads: f̂ = χ>f .

2.2 The Graph Wavelets

Graph wavelets were defined in [5] using the graph Fourier modes. Let us note ψs,a the wavelet
centered around node a. Its construction is based on band-pass filters defined in the graph Fourier
domain, generated by stretching a band-pass filter kernel g(·) by a scale parameter s > 0. The
stretched filter has matrix representation Ĝs = diag(g(sλ1), . . . , g(sλN )). Hence, the wavelet
basis at scale s reads as: Ψs = (ψs,1|ψs,2| . . . |ψs,N ) = χĜsχ>.
Here, our main use is of the localized wavelets ψs,a themselves. The intuition behind this defi-
nition of wavelets on graphs is that, at small scales (small scale parameter s), the filter g(s ·) is
stretched out, thus letting through high frequency modes essential to good localization: corre-
sponding wavelets extend only to their close neighbourhood in the graph. At large scales (large s)
the filter function is compressed around low frequency modes and this creates wavelets encoding
a coarser description of the local environment. The details of the band-pass kernel we use as well
as the boundaries of the scale parameter s are discussed in section 3.1 of [18].

3 Multiscale Community Mining

3.1 Elements of the method

Clustering techniques in data-mining generally rely on three choices [8]: of feature vectors for
each object under consideration; of a distance to quantify whether vectors are close or not; and of
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Figure 1: (a) Sketch of the benchmark graph as defined in section 4.2: each node displayed is
in fact a community of 10 nodes. The thickness of each link is proportional to the total number
of links between the two corresponding communities. The method outputs one dendrogram per
scale. We decide to cut each dendrogram at the maximal gap between two of its nodes. We
illustrate this on a dendrogram at small scale (b) and a dendrogram at large scale (c). The
horizontal dashed line represents the cut.

a clustering algorithm to separate the objects in several clusters. Let us describe our multiscale
community mining through these three key points.

1. Scale-dependent feature vectors. The aim is to group together nodes whose topolog-
ical environments are similar. As the local information is encoded in the wavelets, the feature
vector associated to each scale s and each node a is the wavelet ψs,a after normalization in energy.

2. Correlation distance. We choose the correlation distance (equal to 1 - the correla-
tion coefficient) to quantify two feature vectors’ closeness. For instance, consider two nodes a
and b, their distance reads: dgs(a, b) = 1 − ( ˜ψs,a)T ˜ψs,b, where ˜ψs,a is the normalized wavelet.
Experimentally, it yields better results than, e.g., the Euclidean distance.

3. Clustering algorithm. We use a hierarchical “average-linkage” clustering algorithm [8,
9]. This hierarchical algorithm gives a dendrogram as its output.

Where should we cut the dendrogram? As we do not know beforehand how many clusters
there are in the network, we have to define a criterion to cut the dendrogram. Inspired by the
gap statistics method [6], we decide to cut the dendrogram at the maximal gap between two of
its nodes (see Fig. 1 for an illustration).

3.2 Protocol for multiscale community mining

The proposed method is summarized as follows.
1. Choose the scale s at which one wants to study the community structure.
2. Compute the normalized wavelets at this scale, and use them as feature vectors.
3. Cluster the feature vectors using the correlation distance and hierarchical average-linkage

clustering, and output the induced dendrogram.
4. Cut the dendrogram at its maximal gap, thereby obtaining a partition of the network.
The method outputs the community structure at scale s. To obtain a proper multiscale

description, repeat the procedure with several scales.

4 Detection of stable partitions

4.1 Two instability measures

Let us consider S = {s1 = smin, s2, . . . , sM = smax} a set of scales. We choose them logarithmi-
cally spaced because the density of eigenvalues on the interval [0, 2] is not uniform: they are much
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more grouped around 1 than 0 for complex graphs with communities [12]. Therefore, a small
difference at small scale (a small scale takes into account the largest eigenvalues) has a much
bigger impact on the clustering than the same small difference at large scale. As for the number
of scales M we decide to scan, we choose, by analogy to the classical 1-D discrete wavelets case:
M = K log2(N) where K is typically inferior to 10.

In order to detect the most relevant scales of S, we follow the following points. We first pre-
select potentially stable scales (points 1 and 2), before applying a classical resampling method
on each of these scales (point 3).

1. Consider the dendrogram at scale s, and δ1 and δ2 its first and second largest gaps. We

define β(s) = δ2(s)
δ1(s)

an instability indicator. Indeed, if the first largest gap is clearly larger than

the second (if β(s) is close to 0) then the choice of cutting the dendrogram at δ1 is univocal: the
partition is probably stable. On the other hand, if β(s) is close to 1, i.e. if δ1 ' δ2, then the
choice of cutting the dendrogram at δ1 is less relevant: the partition is probably unstable.

2. We look for the scales at which the corresponding partition is the more stable, i.e. the local
minima of β. Some of the partitions associated to these minima may be identical. For a given
partition, we choose to keep only the local minimum that has the smallest instability. Moreover,
we discard all partitions that have more than N

2 communities (this makes sense because we
consider only connected graphs). We thereby obtain a set of potentially interesting scales S∗.

3. Finally, we apply a resampling method [11] on these few scales: we create many (typically
100) resampled graphs by randomly adding ±10% to the weight of each link. Then, for each
pre-selected scale s ∈ S∗, we compute the associated partition of all the resampled graphs, as
well as the similarity (using the Adjusted Rand Index [7]) between all pairs of partitions. We
then estimate the mean m(s) and the standard deviation σ(s) of the similarity and define a
second instability indicator: γ(s) = 1 − (1 − σ(s)) ∗m(s) (γ ∈ [0, 1]). For instance, at a given
scale s, if all partitions of the resampled graphs are exactly the same, the similarity of all pairs
of partitions is 1, and m(s) = 1, σ(s) = 0, i.e. γ = 0: this particular scale is very stable. The
K scales that give the smallest values of {γ(s), s ∈ S∗} are the K most relevant scales, and the
associated partitions the K most relevant partitions of the graph.

This protocole outputs the K “best” scales, but it does not inform us how good the associated
partitions are. In fact, the protocole will find the “best” K partitions of an Erdös-Renyi (ER)
graph, even though ER graphs have no community structure at any scale. The same issue exists
with methods based on modularity. Indeed, modularity maximisation has a solution even for
ER graphs: but what is the threshold value of modularity after which one decides that a given
partition is interesting? In the framework of this article we rephrase this in: what is the threshold
value γt under which one may say the partition is sufficiently stable? We tackle this problem in
the following with statistical tools.

4.2 A statistical test

A first observation. We consider a first graph that has a well defined multi-scale community
structure that we know a priori. We choose here a realisation of a Sales-Pardo (SP) graph [16]
with the following hierarchical community structure: there are 64 communities of 10 nodes,
nested in 16 communities of 40 nodes, themselves nested in 4 communities of 160 nodes. This
graph is controlled by two parameters: ρ controls how well separated the levels are, and the mean
degree k̄ controls how dense the graph is. The bigger is ρ and the smaller is k̄, the harder it is
to recover the community structures. We choose here ρ = 1 and k̄ = 16, which is considered as a
fairly challenging set of parameters for community detection [16, 11]. This graph is represented in
Fig. 1a. We compare this graph to an Erdös-Renyi (ER) random graph with same mean degree,
i.e. with a probability of existence of link p = 16

640−1 ' 0.025. By construction, this graph is
supposed to have no community structure at any scale. Fig. 2 displays the results.
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Figure 2: Comparison between a SP graph (left) and an ER graph (right) with same number of
nodes and same average degree. The instability β(s) is the black continuous line, the red squares
represent {β(s), s ∈ S∗} and the blue circles {γ(s), s ∈ S∗}.

The results are fundamentally different and two arguments tell us that this ER graph has no
community structure. First of all, the instability β(s) of the ER graph has many local minima
and none of them seems more important than the other. Whereas the SP graph shows a much
more regular β(s). More important, we see that the three smallest values of γ(S∗) for the SP
graph are null, or very close to zero: the associated partitions are very stable (and they actually
correspond to the three“true” levels of description). Whereas γ(S∗) remains very high for the ER
graph at all scales. In order to give statistical significance to this first observation, we propose a
statistical test to automatically decide which scales of a given graph are statistically significant.

The test. Consider a graph G0 = (V0, E0, A0) and its instability function γ0(S∗0 ). The goal is
to test each scale s ∈ S∗0 and decide whether it is interesting or not. To this end, we propose the
following test:

1. Formulate the Null Hypothesis H0: G0 has no community structure at any scale.
2. Generate a large number R of ER graphs with same mean degree.
3. Compute their γ(S∗) and obtain the general statistics Sγ of the values of γ.
4. For each scale s ∈ S∗0 , if γ0(s) is lower than the first α-quantile of Sγ , then we reject H0

with a confidence of 1 − 1
α (if R >> α): G0 has a community structure at this particular scale.

Typically, we use α = 100 and R = 1000.
For instance, if we consider the SP graph of the last section, and apply this statistical test,

the first 100-quantile of Sγ for k̄ = 16 is γt = 0.32. In this context, out of the 5 scales of S∗ and
their associated instability values γ(S∗) (shown on the left plot of Fig. 2 with blue circles), 4 are
under γt: 3 have zero instability and they correspond exactly to the three levels of description,
one at γ = 0.25 is close to the threshold, and corresponds to a partition of 42 communities
where the smallest communities of 10 nodes are partially aggregated together. This partition is
understandable but we still consider it as a false positive. In information retrieval, precision and
recall are two widely-used measures to characterize such tests. In our context, precision is the
fraction of retrieved scales that are relevant, while recall is the fraction of relevant scales that
are retrieved. In this particular example, we have a precision of 0.75 and a recall of 1.

Performance of the test. We follow this procedure on 200 realisations of a SP random graph
with ρ = 1 and k̄ = 16 and obtain the Precision and Recall diagram of Fig.3.b. In average, we
detect the three “true” partitions (Recall is almost always equal to 1), but we also have around
three false positives (Precision around 0.5). These false positives correspond to partitions that
are very similar to the three “true” ones (sometimes only a difference of one node permutation)
but not perfectly equal. The precision is thereby conservative and remains low. On the same
figure, we also show the results for ρ = 0.8 (a) and ρ = 1.4 (c). As expected, as ρ decreases and
the different hierarchical levels become more and more separated, the test becomes more reliable.
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Figure 3: Precision and Recall diagramm for k̄ = 16 and (a) ρ = 0.8, (b) ρ = 1, and (c) ρ = 1.4
for 200 realisations of a Sales-Pardo random graph.

5 Conclusion
This work is a methodological contribution to multi scale community mining as well as the first
work -up to our knowledge- that takes advantage of the local information encoded in graph
wavelets to tackle classical complex systems issues. This method not only gives a multi-scale
view of the network, but it also automatically gives an intrinsic value (via notions of partition
instability) to each scale. Due to lack of space, we do not show here applications of this method
to real graphs but preliminary results are fruitful and promising, and will be the object of future
publication.
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