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Abstract—In an effort to simplify the analysis of data rep-
resented by networks, a classical approach is to uncover the
community structure of the underlying graph. In this work, we
take advantage of graph wavelets and the associated natural
definition of scale to propose a multi-scale community mining
tool. More precisely, at a given scale, we cluster nodes in the
same community when their corresponding wavelets are highly
correlated. We show that the wavelet transform of a few random
signals is sufficient to uncover correctly multi-scale communities
in a graph. We test the method on a graph benchmark having
hierarchical communities, before applying it to a real social
network measured in a primary school.

Index Terms—Graph wavelets, multiscale community mining

I. INTRODUCTION

Many data are represented as networks (or weighted
graphs), for instance social networks, networks of sensors, of
computers (Internet), of neurons, etc... One frequent and strik-
ing feature is their modular structure, i.e., there exist groups
of nodes, called communities [1], that are more connected
with themselves than with the rest of the network. Nodes
in a community often sharing properties, community mining
provides both a sketch of the structure of a network, and some
insight on nodes’ properties. Grouping nodes in communities
has also been used, for instance, for distributed estimation on
networks [2] (for general discussions, see [3]).

One issue in community mining is to decide the scale at
which the network is analyzed. Often, works on this topic dis-
card the question of scale or propose only ad-hoc discussions.
Among several methods (see the review [1]), the optimization
of modularity [4] is a popular approach. As it is known to
favor an intrinsic scale of description [5], [6], relevant works
on this question obtain a scale-dependent community mining
by modifying the modularity, either by introducing some ad-
hoc parameter [7], [8] or using random walk interpretation [9],
[10]. Our proposition for community mining is to rely on
spectral graph wavelets [11] as a natural way to introduce
the notion of scale in graphs for community mining.

The present work elaborates on [12] and develops a scale-
dependent procedure which identifies community structures
at different scales. The present paper presents two novelties.
Firstly, the method will not rely on optimizing a modified
modularity as it is done in [12]. Instead, the community
detection is tackled as a clustering problem, where wavelets
provide scale-dependent features for the nodes and the gap
properties of hierarchical clustering are used to decide on

the number of detected clusters (i.e., communities). A second
novelty of the present approach is to design a new and faster
algorithm using the wavelet transform of a small number of
random vectors (taking values on the nodes), for clustering the
nodes in communities.

Section II recalls background material on spectral graph
wavelets from [11]. The clustering of nodes in communities
is described in Section III. Its faster version using the wavelet
transform of random vectors is the object of Section IV.
The application of this method on a real dataset of social
interactions in a primary school is shown in Section V. We
conclude in Section VI.

II. SPECTRAL GRAPH WAVELETS

We review here some material to introduce wavelets on
graphs, following [11].

Let G = (V,E,A) be a undirected weighted graph with V
the set of N nodes, E the set of edges, and A the weighted
adjacency matrix such that Aij = Aji ≥ 0 is the weight of
the edge between nodes i and j. The strengths of nodes are
collected in D, a diagonal matrix with Dii = di =

∑
j 6=iAij

the strength of node i. The normalized Laplacian matrix
reads L = D−

1
2LD−

1
2 = I − D−

1
2AD−

1
2 . L is real

symmetric, therefore diagonalisable: its spectrum is composed
of (λl)l=1...N its set of eigenvalues that we decide to sort in
ascending order from λ1 = 0 to λN ≤ 2; and of χ the matrix
of its normalized eigenvectors: χ = (χ1|χ2| . . . |χN ), where
each χl is a vector in RN . The normalized Laplacian L is
preferred here to the non-normalized one L = D−A, because
of its relations with community detection [1].

By analogy to properties of the continuous Laplacian oper-
ator, χ can be considered as the matrix of the graph’s Fourier
modes, and

(√
λl
)
l=1...N

its set of associated “frequencies”
(note that other notions of Fourier transforms on graphs could
be used, e.g. [13]). The graph Fourier transform f̂ of a signal
f defined on the nodes of the graph reads: f̂ = χ>f . For
instance, a Dirac impulse δa localized in node a has a Fourier
transform of components δ̂a(l) = χl(a) for l = 1, ..., N .

Spectral graph wavelets were defined in [11]. Let us de-
fine a band-pass filter kernel g(·). For a scale parameter
s > 0, let us use the stretched band-pass filter g(s·), whose
matrix representation on the graph Fourier modes is Ĝs =
diag(g(sλ1), . . . , g(sλN )). To define wavelet ψs,a at scale s
and around node a, one applies this filter on a Dirac impulse δa



in node a. It turns out that the wavelet basis at scale s reads in
the graph domain as: Ψs = (ψs,1|ψs,2| . . . |ψs,N ) = χĜsχ>.
The wavelet transform of a signal f on the graph at scale s and
node a is obtained as ψ>s,af and, in matrix form, its wavelet
transform on all nodes is the vector Ψsf .

Note that, at small scales (small scale parameter s), the
filter g(s ·) lets through high frequency modes essential to
good localization: corresponding wavelets extends only to their
close neighborhood in the graph. At large scales (large s) the
filter is compressed around low frequency modes and wavelets
encode a wider and coarser local environment.

The details of the band-pass kernel g follow [11] with the
modifications reported in [12]. They are recalled in III-A.

III. MULTISCALE COMMUNITY MINING

Our proposition is to tackle community detection in a
network represented by a graph G as a problem of detecting
clusters of nodes that have the same neighborhood at a chosen
scale of analysis. By construction, the wavelet associated to a
node a and a scale s is local, centered around this node and it
spreads on its neighborhood so that the larger is s, the larger
is the spanned neighborhood. If two nodes are in the same
community, their wavelets will overlap as soon as the scale of
analysis corresponds to the size of the community. In some
sense, wavelets give an “ego-centered” view of how a node
“sees” the network at that scale. Taking advantage of this local
information encoded in wavelets, we develop an approach that
clusters together nodes whose local environments are similar,
i.e., whose associated wavelets are correlated. A multiscale
description of the communities will be achieved by analysing
the network with different scale parameters s.

The proposed method is detailed in Section III-A, and an
example on a graph benchmark is given in Section III-B.

A. Basic method for multiscale community mining

The method consists in four steps:
1. Design of wavelets and choice of scales. The band-pass

filter kernel g from [11] is used:

g(x;α, β, x1, x2) =


x−α1 xα for x < x1

p(x) for x1 ≤ x ≤ x2
xβ2 x

−β for x > x2.

(1)

p(x) is taken as the unique cubic polynomial interpolation that
respects the continuity of g and its derivative g′. Parameters
are set according to the discussion in 3.1 of [12]: x1 = 1

and α = 2, x2 = λN−1/λ2 and β = 1/log10

(
λ3

λ2

)
. For

community mining, this ensures that eigenvector χ2 (called the
Fiedler vector and known to be important for communities) is
seen by wavelets at all scales if one uses smin = 1/λ2 and
smax = λN−1/λ

2
2 as bounds for the scaling parameter. A

sampling of scales in [smin, smax] is then decided upon. For
each scale s, iterate the next three steps.

2. Compute wavelets. At scale s, the feature vector asso-
ciated to each node a is the wavelet ψs,a after normalization
in energy. Let us write ψ̃s,a the normalized wavelets.
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Fig. 1. The method outputs one dendrogram per scale. Each dendrogram is cut
at the maximal gap between two of its nodes to obtain the desired partition in
communities. Left: dendrogram obtained at a small scale. Right: dendrogram
at a large scale. The horizontal dashed line represents the cut.

Fig. 2. Sketch of the benchmark graph as defined in section III-B: each node
displayed is in fact a community of 10 nodes. The thickness of each link
is proportional to the total number of links between the two corresponding
communities. The dashed lines are a visual guide to the existence of a large
scale structure in four communities.

3. Compute the correlation distance of wavelets. Note
that, as we use the normalized Laplacian, the relevant mean
on the graph of any signal f defined on the nodes reads:

f̄ = χ>1 f =
1√∑
i di

N∑
i=1

√
dif(i).

With this definition of the mean, ∀(s, a) ¯ψs,a = 0, and
the correlation distance between two feature vectors (i.e.,
wavelets) associated to nodes a and b simply reads: Ds(a, b) =

1− (ψ̃s,a)T ψ̃s,b. This correlation distance is used to quantify
the closeness between nodes a and b.

4. Clustering algorithm. A hierarchical “average-linkage”
clustering algorithm [14], [15] is run on the correlation
distance matrix Ds(a, b). Its output is a dendrogram whose
succesive subdivisions code different possible clusterings. As
we do not know beforehand how many communities there are
in the network at scale s, we use a method inspired by the
gap statistics [16]: the dendrogram is cut at the maximal gap
between two of its nodes and we keep the resulting partition
as the community structure for scale s. An illustration of
dendrograms and their cut at maximal gap is given in Fig. 1.

Repeating steps 2 to 4 for all scales under study will output
the proposed communities at the different scales.

B. Example on a controlled benchmark

Following [10], the model of graph defined in [17], for
which the multiscale community structure is known, is adopted
as a benchmark to test multiscale community mining. We
will refer to these graphs as Sales-Pardo (SP) graphs. The
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Fig. 3. Adjusted Rand (AR) index of similarity between the partitions
found by the algorithm at each scale and the theoretical small scale (black
squares), medium scale (red crosses) and large scale (blue circles) partitions.
Calculations were done on the Sales-Pardo graph shown in Fig. 2.

global density of links of a SP graph is controlled by a first
parameter k̄ (which is the mean degree of the nodes). Then,
the intra-community and inter-community relative density of
links is fixed by a parameter ρ. As an example, we choose
ρ = 1 and k̄ = 16 and a graph of 640 nodes, divided in
three hierarchical levels: there are 64 small communities of 10
nodes each (the finest scale) embedded in 16 communities of
40 nodes each (the intermediate scale), themselves embedded
in 4 communities of 160 nodes each (the coarsest scale). A
realization of the network is visualized in Fig. 2.

Fig. 3 shows that the method successfully recovers the three
levels of description. Indeed, for each scale s, we plot the
Adjusted Rand (AR) index [18], which measures the similarity
between the partition found by the algorithm at that scale and
the three known theoretical partitions. We observe plateaux
at 1 that indicate that the three levels of communities are
unconvered within large intervals of scales.

IV. USING RANDOM VECTORS FOR COMMUNITY MINING
IN NETWORKS

The proposed method is well suited for networks of around
one thousand nodes. Beyond this, the computational cost
becomes prohibitive because of two steps: the computation
of the wavelets and the computation of the correlation dis-
tance matrix. For the wavelets, one way of going to larger
networks is to bypass the full diagonalisation of the Laplacian
matrix; this was proposed by Hammond et. al [11] by using
Chebychev polynomials and we do not detail that here. For the
correlation, we propose a way to bypass its exact computation
by considering the wavelet transform of a few random signals.

A. Exact correlation distance

The wavelet at scale s centered around node a can be written
ψs,a = χĜsχ>δa. Their average being null, the correlation
distance between the wavelet centered around node a and the
one centered around node b (at scale s) simply reads:

Ds(a, b) = 1− (ψ̃s,a)T ψ̃s,b = 1− δ>a χĜs
2
χ>δb

||ψs,a||2||ψs,b||2
.

B. Approximate correlation distance using random vectors

Consider a random vector r defined on the nodes of the
graph, taking at each node i.i.d. values of zero mean and finite
variance σ2. Define the feature vector at scale s associated
to node a as: fs,a = ψ>s,ar (here at one dimension because

we consider for now only one random vector). Moreover,
define fs = (fs,1|fs,2| . . . |fs,N ) = r>χĜsχ>. Because r is
a random vector centered around 0, its expected value is null,
and: E(fs) = E(r)>χĜsχ> = 0. Therefore, the correlation
between the feature vector associated to node a and the one
associated to node b simply reads:

Cor(fs,a, fs,b) =
δ>a f

>
s fsδb

||fs,a||2||fs,b||2
=
δ>a χĜsχ

>rr>χĜsχ>δb
||fs,a||2||fs,b||2

.

The expected value of the numerator gives:

E(δ>a χĜsχ
>rr>χĜsχ>δb) = δ>a χĜsχ

>E(rr>)χĜsχ>δb

= σ2δ>a χĜs
2
χ>δb.

Moreover:

E(||fs,a||2)2 = E(f>s,afs,a) = δ>a χĜsχ
>E(rr>)χĜsχ>δa

= σ2δ>a χĜs
2
χ>δa = σ2||ψs,a||22.

This implies:

E(1− Cor(fs,a, fs,b)) = 1− σ2δ>a χĜs
2
χ>δb

σ||ψs,a||22σ||ψs,b||22
= Ds(a, b).

Now, this calculation is true when considering the expected
value of one random vector. We will approximate this expected
value by taking the average over ns random vectors.

Consider nS i.i.d. random vectors rl, of zero mean and
finite variance σ2 and r = (r1|r2| . . . |rnS

) the matrix whose
columns are these vectors. Define the feature vector associated
to node a as fs,a = ψ>s,ar (its dimension is now ns) ; and the
feature matrix fs whose columns are these feature vectors:

fs = (fs,1|fs,2| . . . |fs,N ) = r>χĜsχ>. (2)

As ns tends to infinity, the correlation of the feature vectors
tends to the exact correlation matrix. In practice, we show
in Section IV-C that a relatively small nS compared to N is
sufficient. The feature matrix is thereby smaller (of size N×ns
instead of N2) and the computation of the correlations faster.

C. Method with random vectors and illustration

For large networks, or for faster computation, one will use
the method of III-A with the proposed changes: in Step 2,
features are those from Eq. (2); in Step 3, the exact correlation
distance Ds(a, b) is replaced by 1 − Cor(fs,a, fs,b). The rest
of the algorithm is unchanged.

To test the efficiency of the method we propose the fol-
lowing protocole. Generate 100 Sales-Pardo random graphs
as described in Section III-B. Define the small (resp. medium,
large) scale recall ratio as the maximum Adjusted Rand index
between the theoretical small (resp. medium, large) scale
partition and all the partitions found by the algorithm. We
plot in Fig. 4 (top) the average of the three ratios on the 100
graphs with respect to ns, the number of random signals used.
We observe that with a very few random signals we are able to
uncover the theoretical multiscale structure of the network. As
expected, uncovering the small scale partition requires more



0 10 20 30 40 50
0

0.5

1

# random signals
m

e
a

n
 r

e
c
a

ll
 

 

LS

MS

SS

0 20 40 60 80 100

4

5

# random signals

c
o

m
p

. 
ti
m

e
 (

s
)

Fig. 4. Top: small, medium and large scale recall ratios with respect to ns,
the number of random vector used. Bottom: computation time in seconds for
the full community mining procedure with respect to ns. Results are averaged
over 100 realisations of a Sales-Pardo graph, as described in section III-B.

vectors than finding the medium or large scale partitions. In
average on this benchmark, 25 random vectors are necessary to
uncover all levels of description of the network, instead of the
640 wavelets. Fig. 4 (bottom) shows the average computation
time of the algorithm with respect to ns: it is shorter than the
16 seconds required by the classical method.

V. SOCIAL CONTACTS IN A PRIMARY SCHOOL

We propose to apply this method on a real graph of
social interactions between 242 children and teachers of a
primary school [19]. This graph was measured by the So-
ciopatterns [20] collaboration using RFID tags. There are two
classes in each grade, and grades range from 1st to 5th grade.
Results with ns = 30 random vectors are shown in Fig. 5. We
detect three major partitions at different scales. For s ≥ 42,
a large scale partition is uncovered with two communities
(grades 1 to 3 on one side, and grades 4 and 5 on the other).
For 27 ≤ s ≤ 39, a medium scale partition is uncovered where
nodes are separated with respect to their grades. Finally, for
14 ≤ s ≤ 22, the algorithm outputs a small scale partition
where nodes are separated with respect to their classes. Results
for smaller scales are not shown for clarity’s sake, but they
typically show that classes are separated in groups of friends.

VI. CONCLUSION

In an effort to speed up the calculations required by the
method presented in [12], we propose two improvements. The
first one is that we no longer cut the dendrogram by optimizing
a scale-dependent modularity function but we simply cut the
dendrogram at its maximal gap. More important, the second
improvement relies on the wavelet transform of a few random
signals to bypass the calculation of the full correlation matrix.
Instead of computing the correlation of N wavelets of size
N , we only need to compute the correlation of N feature
vectors of size ns. We show on a graph benchmark and on a
real world graph that the number of necessary random vectors
for a full recovery can be small compared to N . The use of
random vectors implies that this community mining method is
not deterministic anymore, and, in future work, we will take
advantage of this to define a notion of stability of a partition
found at a given scale.

scale s

15 23 34 51

1a

1b
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Fig. 5. Multiscale communities of a graph of social interactions measured
in a primary school. This matrix has 242 lines (one per participant in the
experiment). For each scale (for each column of the matrix), two nodes have
the same color if they are in the same community at that scale. Nodes are
sorted with respect to their class, which are recalled on the left. For instance,
“1a” stands for “1st grade class A”.
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