SUBM. TO IEEE TRANSACTIONS ON SIGNAL PROCESSING

Graph Wavelets for Multiscale Community Mining

Nicolas Tremblay, Pierre Borgnat Member, IEEE,
Laboratoire de Physique, CNRS, ENS de Lyon, Université de Lyon, France

Abstract—We develop a signal processing approach to the
multiscale detection of communities in networks, that is of
groups of nodes well connected together. The method relies on
carefully engineered wavelets on graphs to introduce the notion
of scale and to obtain a local view of the graph from each
node. Computing the correlations between wavelets centered at
different nodes, one has access to a notion of similarity between
nodes, thereby enabling a clustering procedure that groups nodes
according to their community at the scale of analysis. By using a
collection of random vectors to estimate the correlation between
the nodes, we show that the method is suitable for the analysis
of large graphs. Furthermore, we introduce a notion of partition
stability and a statistical test allowing us to assess which scales
of analysis of the network are relevant. The effectiveness of
the method is discussed first on multiscale graph benchmarks,
then on real data of social networks and on models for signal
processing on graphs.

Index Terms—Graph wavelets, community mining, multiscale
community, spectral graph theory, wavelet transform

I. INTRODUCTION

In many complex systems, data are naturally represented
as networks (or weighted graphs): social networks, sensor
networks, Internet networks, neuronal networks, transporta-
tion networks, biological networks...[5] A striking property
of many networks, and a common way of simplifying the
network’s analysis, is their modular structure, i.e. there exists
groups of nodes, called communities [6], that are more con-
nected with themselves than with the rest of the network. As
nodes in a same community tend to share common properties,
a partition of the network in communities may provide both
a sketch of the structure of the network, and some insight
into the properties of the nodes, for signal processing issues
especially [7]. In network science, state of the art of com-
munity detection (see the review [6]) is often based on the
optimisation over the possible partitions of nodes of a suitable
criterion, such as the popular modularity [8] or other criteria
such as the normalized cut [9]; or by mapping random walks
from an information theory point of view such as in Ref. [10].

Often, the structural reality of a network is a superposition
of several partitions in communities at different scales, with,
for instance, small communities with only a few nodes,
embedded in larger communities. Examples of these are shown
later on in Fig. 3 for a classical benchmark of complex
networks, Fig. 9 for a real-world network of social interactions,
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and Fig. 11 for a toy-model sensor network. One could
add other examples of networks displaying this property,
such as connectivity networks in the brain [11], [12] or
metabolic networks [13]. The issue of the scale of description
is usually implicitly discarded as soon as an algorithm is
asked to output only one partition as a representation of an
often complex structural reality. In fact, the scale is gener-
ally not chosen by the user but arbitrarily imposed by the
algorithm. For instance, this has been shown for algorithms
based on modularity optimisation which favor an intrinsic
scale of description [14], [15]. To deal with this issue and
to propose a more comprehensive description of a graph’s
community structure, some authors have proposed multiscale
community mining algorithms that output one partition per
scale of description. They are either based on random walk
processes [16], [17], on definitions of parametric modulari-
ties [18], [19], or simply by studying the different solutions
of an agglomerative clustering algorithm [9]. These methods
have various notions of scale parameters: the strength of the
added self-loops in [19], the Markov time in [16], or the loop-
number of an agglomerative algorithm in [9]. It is our goal in
this paper to design a new multiscale method, deeply rooted in
signal processing. In fact, community detection being a central
tool of complex graph analysis that informs about the structure
of many networks, we believe it is of importance to tackle this
problem with the methods of the emerging field of graph signal
processing [5]. Communities in a graph may be considered as
inhomogeneities, and we will explore throughout this paper
how one may use graph wavelets to detect them.

A first contribution of the present work takes advantage
of graph wavelets to obtain a scale-dependent analysis of
communities in networks. There are several frameworks to
introduce wavelets on graphs [20], [21], [22]. We use the one
of Hammond et al. [20] based in spectral graph theory of the
Laplacian, for three reasons: the relevance of the Laplacian
in community detection [6], [7], the easiness with which we
can force the wavelet to be sensitive to communities, and the
existence of a fast wavelet transform that will be used for
fast community mining and detection of stable communities.
By construction, a wavelet associated to a node is local in
the graph: it is centered around this node and spreads on its
neighbourhood so that the larger the scale is, the larger is
the spanned neighbourhood. Wavelets on graphs provide an
“egocentered” view of how a node “sees” the network at that
scale. Taking advantage of this local information encoded in
wavelets, we develop an approach that clusters together nodes
whose local environments are similar, i.e., whose associated
wavelets are correlated.

A second contribution of this work is a way to apply
the method to larger networks (e.g. ten thousand nodes) by



computing the wavelet transform of a few random vectors to
estimate the wavelets’ correlation.

This work’s third contribution is a novel way to assess the
stability of the communities, hence their relevance. Indeed,
multiscale community mining is the sum of two challenges:
output a partition per scale, and assess each of these partitions’
relevance. Defining a stability measure of a partition in com-
munities, and a statistical test comparing the studied graph to
randomised ones, we develop a way to detect at which scales
the network has a relevant community structure.

A preliminary version of this work is presented in [4] where
a filtered modularity is used to find the best communities.
Here, the optimisation of a filtered modularity function is no
longer used and we propose a new, simpler and faster method
to cut the dendrogram given by the hierarchical clustering
algorithm, inspired by the gap statistics method [23] and
detailed in Section IV.

The paper is organized as follows. Section II recalls back-
ground material on spectral graph theory and graph wavelets.
Some developments of the use of spectral graph wavelets for
community mining are presented in Section III: we discuss that
once a network is given, a proper choice of scale boundaries
ends up with parameters for the band-pass filter defining the
wavelets that are different from [20]. Section IV describes
the multiscale community mining procedure. Section V shows
how one may use the wavelet transform of random vectors
to speed up the algorithm and enable the analysis of larger
networks. Section VI describes how to detect stable commu-
nities by measuring the stability of all uncovered partitions.
Section VII discusses a statistical test that enables an automatic
detection of scales for which the associated partitions in
communities are relevant. Performance obtained with the pro-
posed method is illustrated and discussed on two benchmark
networks from the literature in Section VIII and compared to
other methods. Then, in Section IX, we successfully apply this
method to several examples. We conclude in Section X.

Notations: The following notations will be used. Vectors are
denoted by boldface lowercase letters such as a graph signal
f. Matrices are denoted by boldface capital letters such as the
adjacency matrix A. Ensembles are denoted by capital letters
in calligraphic style such as the ensemble of nodes V. Scalars
are denoted either by lowercase letters such as the eigenvalues
A, or by capital letters such as the number of nodes N.

II. SPECTRAL GRAPH THEORY AND WAVELETS
A. The Graph Fourier Transform

Let G = (V,&,A) be a undirected weighted graph with
V the set of nodes, £ the set of edges, and A the weighted
adjacency matrix such that A;; = A ; > 0 is the weight of
the edge between nodes ¢ and j. Note N the total number of
nodes. Let us define the graph’s Laplacian matrix L =D — A
where D is a diagonal matrix with D;; =d; = > ki A;; the
strength of node . The normalized Laplacian matrix reads
L =D LD 7 = Iy — D 2AD 7, where Iy is the
identity matrix of size N. L is real symmetric, therefore
diagonalizable: its spectrum is composed of (\;),_;  its set
of eigenvalues that we sort: 0 = A} < Ay < A3 <--- <Ay <
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2 [24]; and of x the matrix of its normalized eigenvectors:
X = (xilxz].--|xn). Considering only connected graphs,
the multiplicity of eigenvalue A\; = 0 is 1 [24]. By analogy to
the continuous Laplacian operator whose eigenfunctions are
the continuous Fourier modes and eigenvalues their squared
frequencies, x is considered as the matrix of the graph’s
Fourier modes, and (v/X;) j—y_y its set of associated “fre-
quencies”. A more comprehensive discussion is in Ref. [25].
For instance, the graph Fourier transform f of a signal f
defined on the nodes of the graph reads: f= X " f. Note that
other definitions of Fourier vectors could be considered, for
example [26]. However, using Fourier vectors defined with the
Laplacian is relevant for community detection as its has been
widely used in spectral clustering [6]. There is an on-going
debate over which version of the Laplacian (normalized or
not) should be used. Donetti et al. [27] show their spectral
algorithm is more efficient with the normalized Laplacian,
without proposing an explanation. More generally, it has been
proved that the spectrum of the normalized Laplacian has
very close links with famous graph invariants such as the
Cheeger constant or the discrepancy, or that A,, for instance, is
related with the speed of convergence of random walks on the
graph [24]. Moreover, the fact that the spectrum is bounded
between 0 and 2 generally makes calculations involving the
normalized Laplacian easier. For all these reasons, we choose
here to use the normalized Laplacian.

B. Spectral Graph Wavelets

Spectral graph wavelets were defined in [20] using the
graph Fourier modes previously defined. In the following, we
write the theory of [20] in the more condensed language of
linear algebra. Let us note v , the wavelet at scale s € R’}
centered around node a € V. Its construction is based on band-
pass filters defined in the graph Fourier domain, generated
by stretching a unique band-pass wavelet filter kernel g¢(-)
by a scale parameter s > 0. The stretched filter has a
matrix representation G = diag(g(sA1),...,g(sAn)) that
is diagonal on the Fourier modes (the IV eigenvectors of L).
Hence, the wavelet basis at scale s reads as:

T, = (Y152l [9hsn) = XGsX - )
For just one wavelet, this reads equivalently as:
"/’s,a = XGSXTéa- (2

Then the wavelet coefficient at scale s and node a of a
signal f reads Wy(s,a) =, ,f. Our first use will be of the
localized wavelets 1), , themselves, and the wavelet transform
of signals is required later on in Section V. Note also that the
filter kernel function ¢ is defined as a continuous function
defined on R* and sampled on the graph Fourier space. On
the other hand, for each given scale parameter s, the filter G
is discrete: only the values of g(s-) on the spectrum (\;),_;
are needed, hence the matrix notation. However, the wavelets
are continuous in scale s and discrete in space: 1, , is a
column vector of size N giving its value at each node.

The intuition behind this definition of wavelets on graphs is
that, at small scales (small s), the filter g(s-) is stretched out.
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Fig. 1. (a) Shape of the filter function g(z) for four different values of
«. (b) Band-pass wavelet filter functions g for M = 4 different scales and
z1 =1, 29 = 7, = 2 and 8 = 41. The actual eigenvalues \; of the
network (the multi scale SP benchmark used in section VIII) with N = 640
nodes are indicated with crosses on the z axis. A fifth filter function is shown
with a dashed line: it corresponds to a scale even smaller than Sy,in.

It thus lets through high frequency modes essential to good
localization; the corresponding wavelets extends only to their
close neighbourhood in the graph. At large scales (large s)
the filter function is compressed around low frequency modes
and this creates wavelets encoding a coarser description of the
local environment.

The parameters defining the precise shape of the band-pass
wavelet filter kernel g(-) are important. Part of our contribution
is to engineer a suitable filter kernel for community detection:
details are given in Section III

C. Fast Wavelet Transform

Beyond a size of 1000 nodes, the computational cost of
the Laplacian’s diagonalization becomes prohibitive: the exact
computation of the Fourier matrix X is no longer possible.
Hammond et. al [20] designed an efficient way of bypassing
the diagonalisation of the Laplacian and obtained an approx-
imation of the wavelets by using Chebychev polynomials to
approximate the filters [28]. We will write FWWT  the operator
corresponding to this fast wavelet transform at scale s. For
a given signal f, FWT(f) is a vector where the element
FWT s(F)(%) is the wavelet coefficient of f at node ¢ and
scale s. Then the wavelet basis W at scale s can be efficiently
approximated by:

where I is the identity matrix of size N. The error of
approximation is tuned by the degree m of the Chebychev
polynomial: the larger is m, the better is the approximation.
Unless otherwise specified, we use in the following m = 50.

III. GRAPH WAVELET FILTER PARAMETERS
We use the band-pass filter kernel g proposed in [20]:

(oSN e%

x “z for x <z
g(x; @, B, 1, 22) = § p(2) for z1<x<z2 (4
xg z P for = > x».

where p(x) is taken as the unique cubic polynomial interpo-
lation that respects the continuity of g and its derivative ¢'.
The integers « and 3, and the transition points z; and xo are
the parameters of the filter, which we here define in a novel
way adapted for community mining. For that, let us study
which scale boundaries are relevant. The parameters are based

on an argument of spectral clustering of graphs [6], [7]: the
eigenvector X2 (associated to the smallest non-zero eigenvalue
A2, also called Fiedler vector) is the first in importance for
community mining because it contains information on the
coarsest description of the graph. The following describes one
proposition for the construction of the band-pass wavelet filter
from this argument.

A first consequence is that the maximum scale s,,q; iS
set so that the filter function g(S;q. x) starts decaying as
a power law only after © = Ao, hence S = x2/A2. We
require also that the filter at the maximum scale is highly
selective around As; for that, all other eigenmodes (especially
As3) have to be attenuated. Choosing an attenuation by a factor
10, this leads us to: g(Smaz A2) 10 g(Smaz A3), hence
B8 = 1/logg (;‘—j) We thereby ensure that the filter at the
maximum scale essentially keeps the information from xo.

Second, we need to keep a part of x> in the wavelets of
every scale, so that all wavelets are sensitive to large scale
community structure. We propose as minimum scale S,y
the one for which ¢(S;nin A2) becomes smaller than 1. Using
eq. (4), this gives s, = x1/A2. Imposing also that g(s,,in -)
spans at least the whole range of eigenvalues between 0 and
1 (indeed, spectral clustering algorithms always consider only
the first few eigenvectors [29], and experimentally we never
need to stretch the band-pass further than A = 1) we need
Smin X 1=uzo.

This argumentation gives us a value for 5 and three equa-
tions linking z1, 2, Smin and Smaq -

71 ! Ty
Ao’ Y A3’
where we see that x; has the unique effect of translating
the scale boundaries s,,i, and S,,q» on the RT axis. z; can
therefore be safely fixed to 1. This leaves «, describing the
cut-off at low frequency. In classical wavelets, o corresponds
to the number of moments equal to zero. But in our case, this
interpretation is not valid because the smallest value of s\ is
SminA2 = 1, and is therefore already too large to be affected
by a. In fact, « only has an indirect effect on the maximum of
g(x): the larger is «, the larger is the maximum value of g(x),
the more selective is the filter between x; and x5 as shown on
Fig. 1a. This selectivity is wished for at large scale but this is
already insured by the other parameters we fixed. The effect
of o will especially be seen at medium and small scales for
which we want to keep the information of small eigenvalues:
we do not want the filter to be too selective. Moreover, for
localisation purposes (see [20]), a needs to be larger than 1.
We therefore fix it to 2 in the following. Fig. 1b shows wavelet
filters g(s-) with the proposed range of scale and parameters
for an example of the Sales-Pardo benchmark network [30]
(see Section VIII A).

Finally, we have to choose a sampling of M scales between
the scale boundaries: S = {s1 = Smin, S2, -+, SM = Smaz |-
We choose them logarithmically spaced because the density
of eigenvalues on the interval [0, 2] is not uniform: they are
much more grouped around 1 than 0 for complex graphs with
communities [31]. This non-uniformity is indeed observable
in Fig. 1b, where the eigenvalues are plotted on the x-axis.

Smin = T2 Smazxr = (5)



Therefore, a small difference at small scale (a small scale
takes into account the largest eigenvalues) has a much bigger
impact on the clustering than the same small difference at
large scale. As for the number of scales M we decide to scan,
we choose, by analogy to the classical 1-D discrete wavelets
case: M = rlog,(N) where & is typically inferior to 10, and
N the number of nodes [25].

IV. MULTISCALE COMMUNITY MINING

At a given scale s € S, the proposed community mining

protocol is described in the following three key points. It
consists in applying unsupervised classification to a set of scale
dependent feature vectors defined by the wavelet transform.
1. Scale-dependent feature vectors. The aim is to group
together nodes whose topological environments are similar.
As the local information and topology in a graph is encoded
in the wavelets we define for each node a its feature vector to
be its associated wavelet 1) .
2. Correlation distance. To compare nodes, we use a distance
between their features, chosen as the correlation distance
between the wavelet centered around node a and the one
centered around node b (at scale s):

T
qj)s,a’l;bS,b

Dg(a,b) =1—
195,

(6)

.
Experimentally, this correlation distance yields better results
than, e.g., the Euclidean distance.
Note that this is a correlation distance because the wavelet
have zero mean. Indeed, as we use the normalized Laplacian
L, the relevant mean of any signal f reads:

1 N
—_— d;f(i).
s Vdif (i)
With this definition of the mean (used for instance in [20]
Section 5.1), we have that: V(s,a) s, X1 Ys.a
X1 XGsX 04 = gs(1)x1(a) since X is an orthonormal ma-
trix. By definition of a wavelet filter, the constant component
gs(1) is null, hence %, , = 0. Note that if we had used the
combinatorial Laplacian L, whose first eigenvector is constant,
the mean of any signal f defined on the nodes would have
been the classical mean: f = 4 Ziv=1 1.
3. Clustering algorithm. We use a hierarchical “average-
linkage” clustering algorithm [32], [33] on this distance matrix
Dg. This hierarchical algorithm gives a dendrogram as its
output that one needs to cut horizontally to obtain the partition
P (see Fig 2b for an example of a dendrogram of a toy graph
with NV = 32 nodes illustrated in Fig 2a). A main question is:
where should we cut this dendrogram? As we do not know
beforehand how many clusters there are in the network, we
have to define a criterion to cut the dendrogram. In previous
works [4], [1], inspired by the gap statistics method [34],
we simply used to cut the dendrogram at its maximal gap.
Here, we propose a criterion to cut the dendrogram based on
averaging the maximal gaps of all the root-leaf paths of the
dendrogram, as this method is more robust to outliers.

More precisely, consider a node a and define its
dendrogram-path: it is the path between the leaf of the dendro-
gram corresponding to node a and the root of the dendrogram

11950
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Fig. 2. A toygraph with N = 32 nodes is illustrated in (a). (b) shows
the dendrogram obtained at an intermediate scale for this graph; in red is
an example of dendrogram path corresponding to a node a; (c) shows the
associated gap function I'y; (d) shows I', the average of all gap functions: it
is maximal for an interval of correlation distance bounded by the two vertical
green dashed lines. The vertical red line is the middle of the interval. (e)
shows the effect of the corresponding cut: it separates nodes in communities.
(f) and (g) are equivalent to (d) and (e) for a larger scale parameter.

(the node of the dendrogram that has the highest correlation
distance). Fig. 2b shows an example of a dendrogram with, in
red, an example of a dendrogram-path. For this node a, one
can plot its gap function I', built the following way: follow
the dendrogram-path starting at zero correlation distance. For
each correlation distance, the path is between two dendrogram
nodes: plot the gap between them. The gap function corre-
sponding to the dendrogram-path shown in Fig. 2b is plotted
in Fig. 2c. By averaging all gap functions corresponding to all
nodes, one obtains the global gap function:

1
r= —— r,
Nmax(corr. dist.) Z

acV

shown in Fig. 2d. Following the gap statistics intuition [34], we
consider that the best possible partition given this dendrogram
is obtained by cutting the dendrogram at the maximum of T’
(see Fig. 2d and 2e for an illustration). An example at a larger
scale is illustrated in Figs. 2f and 2g.

Repeating these three steps for each scale s € S, one obtains
the multiscale set of partitions P = {Ps}ses.

V. FAST COMMUNITY MINING WITH RANDOM VECTORS

At step 1 of the method of Section IV, one needs to compute
W, all wavelets at a given scale s. For that, the fast wavelet
transform of N Diracs is sufficient (see Eq. (3)). However,
the information that is really needed from these wavelets is
their correlation matrix D, (computed in step 2). It is possible
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to bypass the full computation of each wavelet: we propose
instead a method to estimate directly the correlation matrix by
computing the fast wavelet transform of a few random signals.

Consider a random vector » € R” defined on the nodes
of the graph, composed of N independent normal random
variables of zero mean and finite variance 2. Define the
feature f,, € R at scale s associated to node a as the
projection of that vector on the wavelet ¥, , :

N

> thealk)r(k).

k=1

®)

T
fs,a = s,ar =

Consider now the correlation of the features associated to
nodes a and b. By definition :

E((fs a — (fs a))(fs b —
\/VE]I (fs,a)Var(fsp)

As a sum of N independent normal random variables, f; , is
a normal random variable of expected value

(fs b)))

Cor(fs,aafs,b): (9)

(fs a) =Y aE(r) =0 (10)
and variance
Var(fS,a) = E((f&a - E(fS,a))Q) = ]E( sz,a)
= P E(r r)pe . = 0?2 (A1)
Therefore, Eq.(9) is rewritten as:
E s,aJ s
Cor(fs,ar fop) = s.afen) (12)

72 Ps.all l[¥ssll,

Compute the covariance :

E(fsafsp) = JE((zﬁZar)( )
N
- Zwsa (S s (K)r(K))
k'=1
= qu)sa wsb ) ( (k)?"(kl))
k;ék’
+Zwsa ’lpsb ) ( (k)g)
= 21/;5 aVsb- (13)
Therefore:
T
wsb
Corlfoar o) = g Lol ¥

The features’ correlation is exactly the correlation between the
wavelets centered around nodes a and b. Before discussing the
estimation of this correlation, let us show that f; , and f; ; are
jointly Gaussian, i.e. that any linear combination cf; , + dfs »
((¢,d) € R?) is Gaussian. In fact:

N
cfoa+dfen =Y (s alk) + dios p(k))r(k)
k=1
is a sum of independent normal random variables, therefore
normal.
To estimate the correlation of Eq. (14), we use the classical
sample correlation estimator. Consider now 7 realizations of

r and store them in the matrix R = (r1|ra|...|r,) € RVX7
where the i-th column 7; is the ¢-th realization of 7. Note

Za = 1] r; the i-th realization of f;,, and concatenate all
its n reahzatlons in the feature vector f; , :

J.=v].R (fs,a € RT).

s,a s,a
The sample correlation coefficient estimator between f , and
fs.b reads:

é«b _ (fsya*fs,a)T(fs,b*J_Fs,b)
o ||f8,a_f8,a||2||fs,b_ s

where fS,a is the constant vector equal to the average of f; , :
if 1 is the constant vector equal to 1, fy = 17 i, 1.

As fsq and f,; are jointly Gaussian, this estimator is
asymptotically consistent, hence:

15)

(16)

'(pja'(Pa b
hm Cab - Cor(f& as fa b) T T T T (17)
oo Y 15,0l 1950l
Therefore: .
lim 1—Ca, = Ds(a,b). (18)

n——+00

In practice, experiments will show (see Section VIII-A) that
a relatively small 1 compared to NN is sufficient. Therefore,
instead of computing the fast wavelet transform of N Diracs
to obtain all wavelets and then compute the corresponding
correlation matrix of N vectors of size N, one only needs to
compute the fast wavelet transform of a small number 7 of
random vectors and then compute the correlation matrix of [NV
vectors of size 7).

Let us recap this fast community mining procedure, at a
given scale s, in three steps:
1. Generate a matrix of 7 Gaussian random vectors of
zero mean and variance o2 (in practice: 02 = 1) R =
(ri|ra] -« - |r,) € RN*7. Compute the fast wavelet transform
of each of those 7 vectors to obtain one feature vector f ,
per node:

FWT R = [ 1|f | | ;—N]—r
2. Estimate the distance matrix Dg(a,b):
_ f. T _f
Ds(a,b) ~1— Cab,n _ (.fs,a fs,a) (.fs,b fs,b) )

||fs,a - fs@”z”.fs,b - _,

3. Same as step 3 of section IV.
Repeating these three steps for each scale s € S, one obtains
the multiscale set of partitions P = {Ps}ses.

VI. DETECTION OF STABLE PARTITIONS

At this point of the discussion, we are able to output a set
of partitions P = {Ps}scs, one for each scale. The question
one needs to address now can be formulated as a detection
problem: how can one detect if a given scale displays relevant
communities for a given graph?

The relevance of a scale is usually linked to notions of
stability of the associated partition. In the literature, many
notions of stability exist, e.g. some specific to multi-scale
procedures [17] or some based on the stochasticity of modu-
larity maximization algorithms [35], [36]. Only two different



measures will be studied here, one from [17] and a new one
that we introduce. The first measure relies on creating B
resampled graphs by randomly adding +p% (typically p = 10)
to the weight of each link and computing the corresponding
B sets of partitions {Psb}be[l, B],ses- Then, for each scale s,
define the stability 7,.(s) as the mean of the similarity between
all pairs of partitions of {P},c1, p:

2
Yr(s) = m Z

(b,0)€E[L, B]? brc

ari(P},F5),  (19)

where the function ari is the Adjusted Rand Index, a partition
similarity measure recalled in Appendix B (other similarities
could be used indifferently). If, at a given scale s, the partition
found for all B resampled graph is the same, the partition is
stable (7,-(s) will be close to 1); if not, it is unstable (v,(s)
will be close to 0).

The second measure ~, takes advantage of the inherent
stochasticity of the fast community mining with random
signals, presented here, as it is based on the transform of a
few random signals.

Consider J sets of n random signals (typically J no larger
than N/7 to keep the computation time limited, the choice
being J = 20 in the following) and compute the associated sets
of partitions {PJ }ien,,ses- For each scale s, the stability
Ya(s) is defined as the mean of the similarity between all
pairs of partitions of {PJ};cp j:

2
’Ya(s)*J(J_l) . Z o
(4,9)€[1,J]?,i#]
Again, the more stable is the partition associated to the scale
s, the closer to 1 will be 7,(s).

The two stabilities will be compared to each other in
Section VIII-A. We argue that it is preferable to use v, than
~, for several reasons. First, small scale structures are more
sensitive than large scale structures for a same perturbation
level p: there is a risk that small structures get artificially
classified as unstable. Moreover, perturbing the graph perturbs
also its spectrum, therefore the scale interval [S,uin, Smax)
and ultimately the discrete set of scales S. Therefore, each
partition in {P?}yc(1 5] is not computed exactly at the same
scale. Finally, v, requires to fix arbitrarily a parameter p. 7,
has none of these inconveniences. One could argue that the
variance o2 is a parameter, but as we look at correlations, it
actually does not have any impact. The only parameter one
could find is 7, but this parameter is not added by the stability
measure: it is inherent to the community detection protocol.

ari(P}, P!).  (20)

VII. A STATISTICAL TEST FOR STABILITY

The protocol detailed in Section V outputs a set of partitions
P = {Ps}ses, and Section VI explains how to obtain a
score 7y, that measures how stable each partition is. From
this information, one can extract the K “best” scales of this
network. Classical multiscale community mining methods stop
at this point of the discussion: they output one partition per
scale and a measure of their stability. The problem that arises
next is that these methods will find the “best” K partitions
of, for instance, an Erdos-Renyi (ER) graph, even though ER
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graphs have no community structure at any scale. In fact, what
would be valuable is a way to inform us how intrinsically
good each scale is. This issue exists for methods based on
modularity [8], [17] for instance, as modularity maximisation
outputs a solution even for ER graphs: what is the threshold
value of modularity over which one decides that a given
partition is objectively interesting?

In the framework of the proposed method, this turns into:
what is the threshold value 7% over which one may say
a partition is sufficiently stable? We tackle this problem
using stability statistics of randomised versions of the graph,
against which the measured stabilities will be compared.
Section VII-A presents a randomisation procedure using the
Chung Lu (CL) model [37]. A statistical test is then defined
in VII-B to automatically detect partitions that are statistically
relevant. A general discussion on the test will be found at the
end of the next Section (in VIII-C).

A. Randomised graphs

Consider a graph G = (V, €, A) and (k;);=1,.. v its degree
sequence. A Chung-Lu (CL) graph [37], [38] associated to
G is a binary random graph with the same expected degree
sequence. To construct it, first randomly re-allocate all the
degrees to the nodes, and wire each edge (connecting nodes ¢
and j for instance) with a probability of min(1, I;ZVI?;) where
W = % >, ki is the expected total number of edges.

In applications where weighted graphs are considered (i.e.,
A is not binary), a model of weighted Chung-Lu graph [39]

is recalled in Appendix C.

B. The test

Consider a graph G = (V, &, A) and its multi-scale set of
partitions P = {Ps}scs and stability measure 7,. To test
which scale s € § is interesting, we compare its stability
measure to the stability measure of (weighted) Chung-Lu
graphs. The details are:

1. Formulate a Null Hypothesis HO: G has no community
structure at any scale.

2. Generate a large number R of randomised CL graphs
associated to G: {G1,Ga, -+ ,GRr}.

3. Compute the stability measure «; for each random graph
Gr, and empirically obtain the probability distribution S,
from all the values {7 },c[1,R)-

4. For each scale s € S, if v,(s) is higher than the higher
a-quantile v of S, , then we reject HO with a confidence
of 1 —1/a (if R >> «): G has a community structure at
this particular scale. Typically, we use o = 100 and R large
enough so that S, has a cardinal higher than 1000, i.e. R ~
%. Indeed, each stability measure «;, contributes (one value
per scale) to S, .

Finally, one ends up with a set of scales S = {s €
S s.t. v4(8) > 4%} € S for which the associated partitions
P = {Py, k € S} are stable under significance level 1 —1/av.

VIII. PERFORMANCE ON BENCHMARK NETWORKS AND
COMPARISON TO OTHER METHODS

For a fair comparison of multiscale algorithms, we compare
the set of partitions P found by each algorithm with the ground
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Fig. 3. Sketch of a realization of the SP graph. Each node displayed is in fact a community of 10 nodes. Three partitions (associated to the three stable
intervals of scales of Fig. 4) are plotted in 1, 2 and 3, showing respectively the partition in 64, 16 and 4 communities (nodes drawn in the same color are in

the same community). The layout of the graph is obtained using ForceAtla
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Fig. 4. (a) Result of the multiscale community mining protocol on a

realization of a SP graph. Each scale outputs a partition and we plot its
similarity with the small (medium, large) theoretical scale. The scale interval
1 (resp. 2, 3) represents the scales where the exact small (resp. medium, large)
scale theoretical partition is uncovered. (b) Instabilities 1 — v, and 1 — v,
versus scale s. The three intervals of scale are the same as in (a): the associated
partitions of scales with low instability (i.e. high stability) correspond to the
theoretical partitions.

truth of well controlled graph benchmarks. The performance
of a given algorithm is measured as the maximum value of
the Adjusted Rand Index between the “true” partition of the
benchmark and the partitions in P. This measure has a name in
information retrieval: the recall ratio. In our context of multi-
scale methods, we will use hierarchical benchmarks that have
several ground truths. For instance, the first benchmark we use
has three “true” partitions, corresponding to three different
scales. We adapt the notion of recall ratio to this particular
case: the large (resp. medium, small) scale recall LSR (resp.
MSR, SSR) is the maximum value of the Adjusted Rand Index
between the large (resp. medium, small) scale “true” partition
and the partitions in P.

A. Results on a Sales-Pardo network

For a first illustration of this method, we apply it on a three-
level hierarchical graph benchmark first proposed by Sales-
Pardo et al. [30], and recalled in Appendix A. A sketch of
the three scales of this benchmark is illustrated in Fig. 3.
Sales-Pardo (SP) graphs are parametrized by p that quantifies
how separated the three scales are (the smaller is p the more
separated the scales are), and k, the average degree, that
controls how dense the network is. The bigger is p and the
smaller is k the harder it is to uncover the communities.
We apply the costly protocol described in Section IV (which
computes all N = 640 wavelets at each scale) to such a SP
graph with parameters p = 1 and k& = 16: see Fig. 4a for an
illustration of the result. There are intervals of scales where the
theoretical partitions are exactly uncovered. In this particular

s2 implemented in Gephi [40].
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Fig. 5. (a) SSR, MSR and LSR with respect to 7, the number of random vector
used: only 30 random vectors are necessary to recover perfectly the three
scales of description. (b) Computation time in seconds for the full community
mining procedure with respect to 7. Results are averaged over 100 realizations
of a SP graph with p =1 and k = 16.

graph, the recall ratios, i.e. the maximum value of the Adjusted
Rand Index, are all equal to 1 (LSR=MSR=SSR=1).

To test the efficiency of the fast protocol based on random
vectors described in Section V, to study the effect of 7, and
to compute y,, we applied our method with variable 7 to 100
realizations of the SP graph (p = 1, k = 16). Fig. 5a shows
that the true partitions are uncovered with a small number of
random vectors (n ~ 30 << N = 640) and that, as expected,
more vectors are necessary to detect community structures at
small scales. Here, 30 random vectors are enough to uncover
all levels of description of the network, instead of the 640
wavelets. Fig. 5b shows the average computation time of the
algorithm with respect to 7: it is shorter than the 11.8 seconds
required if one uses the 640 wavelets (computations for Matlab
run on a laptop with Intel i7 Core@2.6GHz with 8GB of
RAM). Results in terms of stability (v,, 7,) are discussed
in Section VIII-C.

Let us compare our method with two other methods from the
multiscale community mining literature, namely Schaub et al.’s
proposition [16] based on Markov processes on the graph and
Arenas’ proposition [19] based on a parametrized modularity
(and here optimized with Louvain’s algorithm [41]). We first
compare these three methods on the SP benchmark with
different sets of parameters. To this end, we used n = 60
random vectors for our method, the same number of scales
for all methods (M = 50), and the scale boundaries proposed
in the respective papers. Fig. 6a (resp. b and c¢) compares the
LSR (resp. MSR and SSR) of the three methods, for p = 1
and different values of k. Fig. 6d (resp. e and f) compares
the LSR (resp. MSR and SSR) of the three methods, for the
harder case p = 2 and different values of k.
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Fig. 6. Comparison between the LSR, MSR and SSR values obtained for
three different multiscale community mining methods on the SP benchmark
for different parameters: left (resp. right) column for p = 1 (resp. p = 2) and
different values of k. We plot the average and the 90% confidence intervals
based on 20 realizations of SP graphs for each set of parameters.

B. Results on a LFR network

We also compare the three methods on the multiscale
version of the Lancichinetti-Fortunato-Radicchi (LFR) bench-
mark [42], [43]. Codes to generate multiscale LFR graphs
were retrieved from [44] and only non-overlapping graphs
were created with the following set of parameters: N = 300
nodes with a mean degree of £ = 10, a maximum degree
of kmaxr = 25, a power law exponent of ¢; = —2 for the
degree distribution, a power law exponent of ¢, = —1 for
the community size distribution, a minimum of minc = 10
nodes and a maximum of maxc = 50 nodes for the micro
community sizes, a minimum of minC' = 20 and a maximum
of maxC' = 80 nodes for the macro community sizes, and no
overlapping (on = om = 0). In this benchmark, there are only
two community levels: a small scale level and a large scale
level. Fig. 7a (resp. b) compares the LSR (resp. SSR) for a
mixing parameter for the macro communities of p1; = 0.08 and
different values of inter-micro communities mixing values pio.
Fig. 7c (resp. d) shows the same for ;1; = 0.14. To obtain this
comparison, we used 1 = 60 random vectors for our method,
the same number of scales for all methods (M = 50), and the
scale boundaries proposed in the respective papers.

On average, our method does better than Arenas’s proposi-
tion, and Schaub’s method is slightly more accurate than ours.
In terms of computation time, Arenas’s version is quicker than
the two others (that are comparable in time) as we used the
fast Louvain algorithm to optimize their filtered modularity.

C. Results for the statistical test for stability

To illustrate the ~, stability measure, let us use J = 20 sets
of n = 60 random signals to estimate the stability -, of the SP
graph used for Fig. 4a. The instability 1 — ~,(s) is plotted in
Fig. 4b: the three annotated intervals corresponding to intervals
of scales where the theoretical partitions are exactly recovered
correspond to high stability partitions (low instability 1 — ;).
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Fig. 7. Comparison between the LSR and SSR values obtained for three
multiscale community mining methods on the LFR benchmark for different
parameters: left (resp. right) column for pqy = 0.08 (resp. p1 = 0.14), and
different values of pa. We plot the average and the 90% confidence intervals
based on 20 realizations of LFR graphs for each set of parameters.
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Fig. 8. Result of the stability test for (a) the SP graph studied in Fig. 4;
(b) a randomised version (as explained in Section VII-A) of this SP graph;
(c) a LFR graph with two scales of community structure as shown by the
two intervals of scales where the exact theoretical partitions are uncovered
[as shown in (d)]. The dashed horizontal line is the threshold value 1 — %
computed with the test. A scale with an instability 1 — v, (resp. stability
~a) lower (resp. higher) than 1 — 4 (resp. 4) is rejected by the test: its
associated partition is more relevant than a typical partition found at that scale
in a random graph.

The literature’s instability 1 — ~,.(s) (computed with B = 20)
is also plotted in Fig. 4b: both instabilities are here almost
superimposed.

Up to our knowledge, there isn’t any method in the multi-
scale community mining literature that we can compare our
statistical test to. Therefore, we only illustrate its output
on several examples grouped in Fig. 8: a) the SP graph
studied in Fig. 4; b) a randomised version (as explained in
Section VII-A) of this SP graph; c) a LFR graph with two
scales of community structure as shown by the two intervals
of scales where the exact theoretical partitions are uncovered
(as shown in Fig. 8d). The ground truth in the case of Fig. 8a)
is that at least the scales in the three intervals should have an
instability lower than the threshold, which is the case. There
are false positives, i.e. scales that have a lower instability than
the threshold but for which the associated partitions are not
one of the three theoretical ones. This is expected since the
partitions corresponding to scales between the intervals are
typically combinations of theoretical scales and are therefore
more stable than partitions in random graphs. The SP graph
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Fig. 9. Stable communities of a graph of social interactions between children in a primary school: figure 1 (resp. 2, 3) shows the partition in 10 (resp. 5, 2)
communities (nodes drawn in the same color are in the same community). These 3 partitions are associated to the three stable scales of Fig. 10a. The layout

of the graph is obtained using ForceAtlas2 implemented in Gephi [40].

with these parameters is a particularly structured graph and
partitions found at scales between the three intervals still show
some stability. On a less structured graph like the LFR graph
of Fig. 8c), there are less false positives. In the case of Fig. 8b),
as the graph is random, the ground truth is that no partition
at any scale is relevant: indeed, we find that no scale has an
instability lower than the threshold. In the following, partitions
that are not stable according to the test will be discarded,
and when whole intervals of scales have partitions with an
instability lower than the threshold, we select the significant
local minima.

The issue of this statistical test is the computation time
it requires. Indeed, one needs to compute the multiscale set
of partitions of R different randomised graphs, where R is
typically around 20. Therefore, it is not suitable for graphs
larger than 1000 nodes.

IX. THREE APPLICATIONS

We illustrate the method on three very different applications:
a social network in IX-A, a non-uniformly sampled swiss roll
manifold as an example of data that occurs in signal processing
on networks in IX-B, and finally an example of a large SP
graph in IX-C.

A. A graph of social interactions between children in a
primary school

The method is first applied on a graph of social interactions
between children in a primary school that was measured in
2009 by wearable RFID (Radio Frequency IDentification)
sensors [45]. The aggregated data over two days is naturally
represented by an adjacency weighted matrix A where A;;
represents the total time of contact between child ¢ and child j.
242 children and teachers participated in the experiment, sep-
arated in five grades (from 15¢ grade to 5th grade), themselves
separated in two classes per grade. The graph has N = 242
nodes and we use M = 50 scales.

Fig. 10 shows the results for this dataset. Three stable
intervals of scales are uncovered (represented by the dotted
vertical lines in Fig. 10a). Within each interval, we choose
the scale with the highest stability (represented by a red
circle in Fig. 10a) to be representative of the whole interval.
Indeed, partitions within each interval are very similar: the

(a)

28 37 51
scale s 28 37 51
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74
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Fig. 10. (a) Results of the stability test for the social interaction network of
Section IX-A. = 30 random vectors were used. The dashed horizontal blue
line is the stability threshold given by the statistical test: it separates three
intervals of scales (represented by the vertical dotted lines). Each interval
of scale can be represented by its highest stability scale (represented in red
circles). (b) shows the corresponding partitions: the y-axis corresponds to
the nodes ordered with respect to school grades. Two nodes in the same
column have the same color if they are in the same community. The partitions
corresponding to the eight first scales are not drawn here: they have too many
communities for this mode of representation.

mean similarity index between the representative partition of
the small (resp. medium, large) scale interval and the other
partitions of this interval is 0.93 (resp. 0.92, 1). Thereby, three
scales of description stand out: the coarse scale (s 103)
where the older children (4th and 5h grades) are in one
community and the younger ones (15!, 22 and 3" grades)
in another. A medium scale description (s = 51) separates
all the grades from one another (groups together all pairs of
classes of same grade). The small scale (s = 28) separates all
10 classes from one another. These three partitions are also
shown in Fig. 9.

B. The swiss roll manifold

A second example is based on the swiss roll manifold shown
in Fig. 11. This manifold is created as in [20] except that the
sampling points are non-uniformly sampled, drawing N = 500
points from 5 Gaussian distributions on the manifold. Then, a
weighted graph is defined by using a Gaussian affinity kernel:
Aij = exp(—||x; — x;][?/20?), with o = 0.1. We apply the
method with M = 50 scales.

Fig. 12 shows the 7, instability results for these data. Many
scales are more stable than the statistical test’s threshold. We
choose to focus on the three most important local minima
(represented by red circles in Fig. 12). Their associated par-
titions are plotted in Fig. 11: they separate the manifold in
respectively 3, 5, and 13 communities. The scale parameter
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Fig. 11. Stable communities of a non uniform swiss roll manifold: Fig. 1 (resp. 2, 3) shows the partition in 13 (resp. 5, 3) communities (nodes drawn in the
same color are in the same community). These 3 partitions are associated to the three stable scales of Fig. 12.
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Fig. 12. Result of the stability test on the swiss roll manifold. » = 50 random
vectors were used. The three most important local minima are drawn in red
circles and their associated partitions are presented in Fig. 11.
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Fig. 13. Comparison between this paper’s multi-scale community mining
method [figures (c) and (d)] with Schaub et al.’s method [figures (a) and (b)]
for a large SP graph of 6400 nodes. Both methods used M = 60 scales. For
this paper’s method, J = 6 sets of 7 = 25 random vectors were used.

s takes very high values because a few nodes of the graph
are far from all others. Being almost disconnected, the graph
Laplacian’s first eigenvalues are very small, and $,,;, and
Smaq take therefore high values. This illustrates the importance
of Section III in selecting automatically the relevant scale
boundaries. Note that the intermediate scale perfectly recovers
the five Gaussians used to generate the data, and that the
smaller and larger scale partitions respect the geometry of the
manifold.

C. A large Sales-Pardo graph

In order to show how the method behaves on larger graphs,
a Sales-Pardo graph of N = 6400 nodes is considered with:
S3 =100, S = 300, S; = 1200, Sy = 6400 — 1600 = 4800,

p = 1 and k£ = 160. In Fig. 13, we compare our method

for M = 60 scales with Schaub et al. [16]’s method based
on Markov dynamics. For Schaub’s method, the instability
measure used, at a given Markov time, is the variation of
information between several solutions of the Louvain algo-
rithm [41] at that Markov time (indeed, the Louvain algorithm
is inherently stochastic). For this paper’s method, we used here
n = 25 random vectors and only J = 6 iterations to estimate
v, but in this example, it is largely enough. In this case, the
statistical test is not used as the computation cost would be
prohibitive. Both methods have a similar average running time
of 8 minutes to extract the multi-scale structure of this graph.

The result for the proposed method is promising for this
larger graph, in that it points correctly to the three existing
partitions at different scales, with an instability measure with
sharp separations between them, sharper than the ones pro-
posed by Schaub et al.’s method.

X. CONCLUSION

An original contribution to multiscale community mining in
networks is discussed, relying on the recently defined spectral
graph wavelets. The local information encoded in wavelets
is used to probe node-to-node correlations depending on the
scale. Then, a hierarchical clustering scheme finds the best
partition in communities at each scale. We propose a way to
by-pass the full computation of the wavelet correlation matri-
ces by using the wavelet transform of a few random vectors,
which improves the computational cost of the algorithm. Also,
an original instability measure of partition in communities
is introduced. This instability measure points at intervals of
scales were the partitions appear to be relevant and stable.
Along with a statistical test that compares the original graph to
randomised ones, it enables us to output statistically significant
scales at which communities exist —if they exist. The statistical
test calls for improvements, as the randomisation procedure it
uses destroys all communities, hence it cannot prevent us from
falsely accepting combination of partitions at different scales
as relevant ones. Still, the local minima of the instability curves
(when lower than the threshold of the test) appear to clearly
point to relevant partitions in communities.

The proposed general framework opens the way to new
manners of dealing with complex network data and signals
on them, by first aggregating the network using the proposed
multiscale approach based on a notion of scale rooted in signal
processing, before applying other techniques of analysis. We
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thus created a bridge between the emerging field of graph
signal processing and its largest potential field of application :
complex graph analysis. A future objective would be, for
instance, to leverage the present work to define filtering
operations on signals on graphs which would be consistent
with the step of community detection in the graph.

SOFTWARE

A Matlab implementation of the Multi Scale Community
Detection using graph WAVelets (MSCD_Wav) Toolbox is
available online at [46].

APPENDIX A
THE SALES-PARDO (SP) HIERARCHICAL BENCHMARK

This hierarchical benchmark is a non-weighted graph in-
troduced in [30], and later used in [17] to test multi scale
community mining tools. We consider N nodes, and three
community structures nested in one another: consider N/N3
communities of N3 nodes (the small scale level), nested in
N/Ny communities of Ny nodes (the medium scale level),
themselves nested in N/N; communities of N7 nodes (the
large scale level), where N3 < Ny < N; < N. Each node
holds therefore 3 community memberships, one at each scale.
Consider any node 4 and define S, the number of nodes that
hold x community memberships in common with <. Here:

« nodes that are not in ¢’s large community do not hold any
common community memberships with i: So = N — ;.

o nodes that are in ¢’s large community but not in ¢’s
medium community only hold one common community
membership with i: S = N7 — No.

o nodes that are in s medium community but not in ¢’s
small community hold two common community member-
ships with i: So = Ny — Ns.

« nodes (different than ¢) that are in 4’s small community
hold three common community memberships with i:
S3 = N3 — 1.

Consider k3 the average (on the nodes) intra small-community
degree, ko the average intra medium-community (but ex-
tra small-community) degree, k; the average intra large-
community (but extra small and medium-community) degree
and k¢ the average extra large-community degree. We define:

k1 = p1S,
k3 = p3Ss,

ko = poSo,

ko = paSa, 21

where p, is the probability of existence of a link between two
nodes that hold z common memberships. A first parameter p
tunes how well separated the different scales are:
_@ _ ko + k1 _ ko + k1 + ko

kl k2 k3 .
The smaller is p the more separated are the scales, the easier
it is to extract the hierarchical community structure. A second
parameter, the average degree k, controls how dense the
network is:

(22)

p

k Ig0+/51+/52+]53.

(23)

The smaller is k, the sparser is the graph, the harder it is to

recover the communities. Given a pair of parameters (p, k),
we obtain the following equations for the probabilities p;:

P k P k

o= )3 sy = sy
P i

=P * - Y 4

Py rsy B rns Y

The p; being probabilities between 0 and 1, we have an
implicit constraint: B

LI

1+p

In this paper, we consider N 640 nodes, and three

community structures nested in one another: 64 communities
of N3 = 10 nodes (the small scale level), nested in 16
communities of Ny = 40 nodes (the medium scale level),
themselves nested in 4 communities of N; = 160 nodes (the
large scale level). Therefore, Sy = 480, S; = 120, S = 30
and S3 = 9. Then, given the parameters p and k& one chooses
to consider, apply equation (24) to get the probabilities of link
existence to generate the graph. In IX-C, we use larger Ny,
N3, N3 with N = 6400.

(25)

APPENDIX B
THE ADJUSTED RAND INDEX OF SIMILARITY
Let P and P’ be two partitions we want to compare, and:
¢ a be the number of pairs of nodes that are in the same
community in P and in the same community in P’.
o b be the number of pairs of nodes that are in different
communities in P and in different communities in P’.
¢ ¢ be the number of pairs of nodes that are in the same
community in P and in different communities in P’
e d be the number of pairs of nodes that are in different
communities in P and in the same community in P’.

In other words, a + b is the number of “agreements” between
P and P’, and c+d is the number of “disagreements” between
P and P’. The Rand index is given by:

a+b a+b

at+b+c+d  (3)°

The Adjusted Rand (AR) index is the corrected-for-chance
version of the Rand index:

B R — FExpectedIndex

-~ MazIndex — ExpectedIndex’

as explained in details in [47]. For instance, this corrects the
fact that two partitions in two communities have a higher
chance to have a high Rand Index than two partitions in twenty
communities. The choice of this similarity index is not crucial;
another one could be used with no loss of generality of the
method discussed here.

(26)

simi(P, P") 27

APPENDIX C
WEIGHTED CHUNG-LU GRAPHS

In many applications, the adjacency matrix A is weighted,
and for the test of Section VII-B, one needs a weighted version
of the classical Chung-Lu model: we present here weighted



Chung-Lu graphs (wCL). To this aim, we first create a CL
graph, and then allocate a weight to each edge. In real net-
works, weights and topology are often not independent [48]. In
fact, there is often a correlation between the average strength
of nodes and their degree (we recall that the strength of a node
is the sum of the weights of its edges). In order to keep these
correlations, we compute from G, the empirical distribution
Py (w) of the weights of the links attached to nodes of degree
K!.

A wCL graph associated to Gy is then built in the following
way: start by creating a CL graph with the same expected
degree sequence as Gy. For each node i (of degree k;) of this
CL graph, draw weights from the appropriate distribution P,
and randomly allocate them to its links whose weight has not
yet been specified (if ¢ is linked to a node j that has already
been considered, then the weight of link ¢ — 7 has already been
chosen by using Py, and is not computed again).

We thereby obtain a wCL graph with the same expected
degree sequence as Gy, the same strength-degree correlation
and a similar weight sequence than Gy [39]. A wCL graph
associated to a binary graph Gy is a CL graph.

Finally, depending on the data at hand, other models could
be considered to obtain randomised graphs for the statistical
test of Section VII-B.
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